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1 Review: The Fourier Transform

1.1 Properties of the Fourier transform

This class is called “Classical Fourier Analysis,” but for the past 20 years, it has been
taught more like “Modern Harmonic Analysis.” Our treatment will be no different.

Definition 1.1. The Fourier transform of a function f € L'(R?) is given by

FNE© = F&) = [ sa)d.
Remark 1.1. By the triangle inequality,

[fllzee < A f1lEr-

We will prove quantitative results about nice sets of functions and extend these results
to more general functions via density arguments. What are our “nice” functions?

Definition 1.2. A C* function f : R? — C is called a Schwarz function if z*D? f € L™
for all multi-indices «, 8 € N%. The vector space of all such functions, S(R?), is called the
Schwarz space.

This says that all the derivatives of f decay faster than any polynomial. Recall that
for a multi-index a € N, we denote

Hlal

o1 Q9 P
 aa1 Qg *
oL 05

— o aq «
la| = a1+ + ag, % = 2wy ald, D

The Schwarz space is a Fréchet space with the topology generated by the countable
family of seminorms {©a g}, gend With va s(f) = |z DB f|| oo

Proposition 1.1 (properties of the Fourier transform). Fiz f € S(R?).

1. If g(x) = f(x —y) withy € R? fized, then §(&) = e_%iyff(f).
Proof.
56 = [ -y do= [P @) de =R, O

~

2. Let g(x) = 2™ f(x) for n € R? fized. Then §(&) = f(& —n).

Proof.



. If f(z) = f(Tz) for T € GLq(R), then f(&) = |det T|' f((T~1)T¢).

Proof.

~

flo) = [ (ra) o
et [ e ) ay
= Jdet 7|t [T ay

= [det |~ F((T™) 7€)

Ifg =T, then §(€) = f(—€).
. If g = Df with o € N%, then §(&) = (2mi&)*f(€)

Proof. Using integration by parts,

~

3(e) = / ¢2E DO f () dir = (2mi€)” FI€).

. If g(x) = 2 f(x) for a € N%, then

Proof.
56) = [ et fla) da

= (_2;)04 /e‘QWix'g(—27rix)°‘f(a:) dx

1

= WDQJ?({)-

~

. Let g=kx f for k € L*(R). Then §(¢) = k(&) f(€).
Proof.
€)= [ 2k« f)(a)da
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= [[ ¥ hta - ) fw) dy o

== // e 2L () £ (y) dz dy
=k(©)F(©)
Remark 1.2. Properties 1, 2, 3, 4, and 7 extend to f € L'(R%).

Remark 1.3. Property 3 implies that any rotation and Jor reflection symmetry 7' € O4(R)
of f is inherited by f. Indeed, if f(z) = f(Tx), then

~ ~ ~

F&) =[det T|7' F((T1) 7€) = F(TY).
Exercise 1.1. Show that

1. If f € S(RY), then f € S(RY).

d ~ d ~
2. 1f £, 2B ¢ then £, SED 7

These follow from properties 5 and 6.

1.2 The Riemann-Lebesgue lemma

Lemma 1.1 (Riemann-Lebesgue). If f € LY(RY), then f € Co(RY) (continuous and van-

ishing at infinity). In particular, f is uniformly continuous.

Proof. Let f, € S(R?) be such that f, L—1> f. By the triangle inequality,

n—o0

1 Fn = Fllzee < |[fa = g 222 0.

Now f, € S(RY) C Cy(RY), and Cy(R?) is closed in L>. So fe Co(R9). O

1.3 Fourier transform of Gaussians

Lemma 1.2. Let A be a positive-definite, real-symmetric d X d matriz. Then
/e—ac~A:ve—27rim~f dr = (det A)—1/27Td/26—7r2§~14*1§.

Proof. A real-symmetric, positive-definite matrix is diagonalizable, so there exists an or-
thogonal O € O4(R) such that A = O" DO with D = diag(\1, ..., \¢) with Ag,..., Ag > 0.
Now

m-A:U:x-OTDOx:Ox-DO:L’y::OzyDy:Z)\jyjz-



We have 0 _o¢

So
/em-Ame%ri:r{ dr = /6_ Z(/\jyf—%iymj) dy

This is a product of 1-dimensional integrals. Let’s look at the 1-dimensional integral

. ux3 w2n2
/e—AyZ’_men dy = / €_>\(y+Tn 2_Tn dy
R R

:/eAy2€ﬂ2n2/)‘ dy
R

_ )\—1/27_[_1/26—#2772/)\.

So we get

d
—2Ar —2miz —1/2 —2n2 /N
/€ zAz Qﬂzxfdl,:H(Aj /7T1/2€ 7T77J/ ])
Jj=1

= (det A)_1/271'd/2(3_7r277'D_177
_ (det A)—l/Zﬂ_d/Qe—ﬂ2§OTD’lO§
= (det A)_l/Qﬂd/Qe_”2§'A71€. O

Corollary 1.1. e~ s n eigenvector of the Fourier transform with eigenvalue 1.

Proof.
F(e o)) (e) A= eI, O
[F(

1.4 Fourier inversion

Theorem 1.1 (Fourier inversion). For f € S(R?), we have

[(F o F)fl(z) = f(-x),
or equivalently,

f(a) = / i€ Fle) de.

We can think of this as decomposing f into a linear combination of characters with
Fourier coefficients.



Proof. We can’t use Fubini like we want to because the integrand is not necessarily abso-
lutely integrable. The (standard) trick is to force a Gaussian in there. For € > 0, let

I.(x) = / o e EE i fe) de.

Then the dominated convergence theorem tells us that I.(z) — [ eQWix'ff(f) d¢ as ¢ —
0. O

Next time, we will complete the proof.



2 Fourier Inversion and Plancherel’s Theorem

2.1 Fourier inversion

Theorem 2.1 (Fourier inversion). For f € S(RY), we have

[(F o F)fl(—z) = f(=),
or equivalently,

fa) = / i () de.

We can think of this as decomposing f into a linear combination of characters with
Fourier coefficients.

Proof. We can’t use Fubini like we want to because the integrand is not necessarily abso-
lutely integrable. The (standard) trick is to force a Gaussian in there. For € > 0, let

L(z) = / e eIl 2T e

Then the dominated convergence theorem tells us that I.(z) — [ e?™@¢ f(f )d€ as e — 0.
On the other hand,

k)= / / e IR 2min € =AM E £ (1)) dy e
= /f(y)/e—f€2|€2€—2m‘(y_x).£ de dy

Use our lemma from last time with the linear transformation A = 7e2I:

1

— / f(y) (7152)7d/27rd/26—7r2(y—x) L (y—2) dy

= [t B sy
Note that fefde_a%mQ de = | el g,

=20 f(a).

To show this convergence, we have [ E*de_s%u_wf(y) dy—f(z)= [ e—de=Elovl’ dz[f(y)—
f(z)]dy. For n > 0, there is a (1) > 0 such that |f(y) — f(z)| < n whenever |z —y| < 4.
Then

/— <5€_de§2|my|2[f(y) — f(z)]dy

T e ny|2
< n/ etV gy <,
lz—y|<d

9



/| LT )~ @)y
T—yY|>

_ T ]2
< 9||fllp~ / et B0 g
ly|>6

alul2
< 2|l / I dy
ly|>6

8
S llpece "2
e—0 0
First pick 7 < 1. Then choose € = ¢(d) = &(n) < 1. O

Corollary 2.1. The Fourier transform is a homeomorphism on S(R?).

2.2 Plancherel’s theorem

Lemma 2.1. For f,g € S(RY), we have
[ fea@c= [ rwat

£l 22 = (1 2

In particular,

so F is an isometry in L? on S(RY).

Proof. For h € S(R?),
/ Fe)n(e) d¢ = / / €20 F()h(E) dar

_ / F@)h(z) da

Now let h = §. Then (Fh)(z) = F(9)(—z) = g(z). O

Theorem 2.2 (Plancherel). The Fourier transform extends from S(R?) to a unitary map
on L*(RY).
Proof Fix f € L*(R%). To define the Fourier transform on F, let f, € S(R?) be such that

n,m—o0

fn —> f. Since F is an isometry in L? on S(RY), || f, — meL2 = | fo = fullpe ———= 0.
So {fn}n>1 is Cauchy and hence convergent in L*(RY). Let f be the L2 limit of the f,.
We claim that f does not depend on the sequence {f,}n>1. Let {gn}n>1 € S(R?) be

another sequence such that g, —> f. Let

b — fk n=2k-—1
" gr n=2k.

10



2 ~
We have that {h,} C S(R?), and h, KGN f. By the same argument as before, {hy}n>1
converges in L?. This means that lim,, h, = lim, f, = lim,, g,.
We now claim that || f|j2 = || f||2 for all f € L?(R9); i.e. F is an isometry on L?. Indeed,

1£ll2 = Tim [ foll = T [| frll2 = [ f]2-

Remark 2.1. This is not yet enough to show that F is unitary. In infinite dimensions,
isometries need not be unitary. For example, take T : £*(N) — (?(N) be T(ay,az,...) =
(0,a1,az,...). Then

(T(ar,az,...), (b1,ba, ... )) =D anbpsr = ((a1,a2,...), (b2, bs,...))
n>1
so T*(a1,a2,...) = (ag,as,...). So T*T = id, but TT* # id. What we need to get an
isometry is surjectivity.
We claim that F : L2(R?) — L?(R%) is onto. We will show that Ran(F) is closed in
L?(RY). As Ran(F) 2 S(RY), this will give L?(RY) = S(Rd)L2 - Ran(}')L2 = Ran(F).
Let g € Ran(F) 2. Then there exist f, € L? such that fA'n L—2> g. JF is an isometry on

L2(RY), 50 [|fn = finllz = [Ifn = finllz 2222% 0. So {fn}n>1 converges in L? to some f.
Then g = f because

1= Fallz = If = full2 2222 0.

By the uniqueness of limits, we get g = f So we get g = fe Ran(F). O

2.3 The Hausdorff-Young inequality
Theorem 2.3 (Hausdorff-Young). For f € S(R?),

Il <M flpy VI<p<2
where 1/p+1/p = 1.

Proof. This follows from interpolation, as we have F : L' — L*> with ||ﬂ|Loo < |Ifllzx and
F i L? — L? with ||f]|z2 = || f]|z2- O

Remark 2.2. As in the proof of Plancherel’s theorem, we can use Hausdorff-Young to
extend the Fourier transform from S(R?) to LP(R?) for any 1 < p < 2.

Note that the Riemann-Lebesgue lemma gives that for f € LI(RY), f € Co(RY). So
we can think of evaluating the Fourier transform at a single point or on a measure 0 set,
such as a plane in R3. The restriction problem asks: For which values of p can we make
sense of the Fourier transform on measure 0 sets, such as a parabaloid or a cone? This is
important in PDE, and it is very hard (still open!).

The next theorem says that the Hausdorff-Young inequality is the best we can do.

11



Theorem 2.4. If || fllza < ||fllz» for some 1 < p,q < 0o and all f € S(RY), then neces-
sarily, g =p' and 1 < p < 2.

Proof. For f € S(R?) with f # 0, define f\(x) = f(x/)) for A > 0. Then || fr|l, = A7P|| f|,,-
We also have

A = / e2mE {1/ ) dz = NF(AE),

so [|fallg = A9 fllg. Then [[fally < [Ifallp if and only if A=4/9||F]l, < X¥/P|f]],, s

ANA=1/a=1/D)) £l < || f]l»- Letting A — 0 or A — oo, we conclude that 1 —1/¢ —1/p = 1.
q p g q p

So we get ¢ = p. O

Next time, we will prove the remaining portion of this theorem, that 1 < p < 2.

12



3 The Littlewood Principle and Lorentz Spaces

3.1 The Littlewood principle and optimality of the Hausdorff-Young in-
equality

Last time we were proving the following theorem.

Theorem 3.1. If || fllza < || fllz» for some 1 < p,q < oo and all f € S(RY), then neces-
sarily, q=p' and 1 <p < 2.

We have already proven the first statement. To prove the second we will use the
Littlewood principle: “A translation invariant operator does not improve decay.” So if
T:LP — L9 then g > p. This is not a theorem but a general principle.

Say we have a bump function at 0 and we translate it far away. Keep doing this (IV
times), and let f be the superposition of all the bump functions. If we apply 7" to f, since
T is translation invariant, we will get N translated copies of the modified bump. Then
| £l ~ NYP while |Tf||ra ~ N9, Then we need N4 < NP, Letting N — oo, we
get 1/¢ <1/p,sop<gq.

The Fourier transform is not translation invariant, however. And the Fourier transform
of a compactly supported function no longer has compact support. However, we can use
the fast decay of the Gaussian to achieve the same effect.

Proof. Let ¢(x) = e~ For 1 <k < N and a > 1, define

o) = e2mT ke (1 — akey).

Then '
Pr(€) = e PMRIG(E — akey).
Let f =31, ¢rand S = Ujvzl{x : |z — aje1] < «/10}. Then

[flle = I fllos) + 1 f 1 e (ravs)-

We can bound each of these by

N
11l e marsy < Z ekl Lo marg) S No ',
k=1

N

Do

k=1

N(1+ O(a™19)

N
11 ) Z

LP(|lz—ajer|<a/10)
MO (X5 (@l k—3[) ~109)

because |x — akei| > |a(j — k)e1| — |z — ajei| > a|j — k| — a/10 > (a/2)|j — k.

13



Taking a > 1, we get || f||Lr ~ N. Similarly,
1F )l o ~ N/

We need N'/P < NP for all N > 1. This means that 1/p’ < 1/p, so p < p/. So
1<p<2 OJ

3.2 Weak LP and Lorentz spaces
Definition 3.1. For 1 < p < oo and f : R* — C, define

A1 = supAl{z : [g(x)] > A}'/7.
weak A5

The weak L? space is the set of measurable functions f : R* — C for which || f 17, <oo.
weak
We denote it by LP  (R9).

weak

Example 3.1. f(z) = |2|¥? isin L \ LP. We have

111 weae = sup A« |27 > AHYP ~ sup AAP) VP ~ 1,
A>0 A>0

Remark 3.1. We will show that the weak LP “norm” is a quasinorm (not a norm) and
that is why we append * to the usual norm notation.

By comparison, for 1 < p < oo,

1712, = / F@)P da

£ ()|
= / / pAPL N dx
0

_ / PN {z < | f(2)] > A} dA

0

=p/00o Nz |f(2)] > A}\%d)\.

So we can write

1fllze = P PIN < (@) > MY (0,000,221

With the convention that p*/* = 1, we also have

105 = DY IAH  [F@)] > APl 0.0, 2

k

Can we do this to LP spaces for other exponents?

14



Definition 3.2. For 1 < p < co and 1 < ¢ < oo, the Lorentz space LP9(R?) is the set
of measurable functions f : R? — C for which

HfH*Lp,q(Rd) = pl/qH)"{:U S f ()] > )‘}ll/p”Lq((opo),%) < 0.

Note that LPP = LP and LP>® =[P .

Lemma 3.1. Hszp,q(Rd) is a quasinorm.

Proof. If || f||55.q =0, then f =0 a.e. For a # 0,

lafllEna = 2N : laf (@)] > APl oo,

A
=p/al || {1 f(2)] > Mlal}?

|al La(®)
= lalll flIzea-

For the “triangle inequality,” we have

1f + gllzne = PNz £ 1£(2) + g(@)] > A} g
< PNz F@)] > M2+ e 1F@)] > A2V )

By

By the concavity of fractional powers, we get

< pl/q
La(4) La(%)

< 2[lfIzea + llgllzr.al- 0

3o @) > A/

3o 151 > A2

Remark 3.2. We will show that for 1 < p < oo and 1 < ¢ < o0, there exists a norm
equivalent to this quasinorm. For p = 1 and ¢ # 1, no such norm exists. Nonetheless, in
this latter case, there is a metric that generates the same topology. In all cases, LP(R%)
is complete.

Proposition 3.1. For f € LPYR?), decompose f = >, 7 fm by defining fm(z) =
f(£)1{2m§|f(x)|<2m+l}(l‘). Then

(i [ P e

In particular, LV C LP%2 whenever q1 < qo.

15



4 Relationships Between The Lorentz Quasinorms and L?
Norms

4.1 Order of growth of Lorentz quasinorms in terms of L? and /¢

Last time, we had the quasinorm

1 gy = PN 2 1 @) > A2 000,09
Remark 4.1. Tt |g| < ||, then g5 < | fIlf

Proposition 4.1. If f € LP4(R?) for 1 < p < 0o and 1 < q < oo, write f = Y mez Jm
where fm(z) = f(2)Lizom<|f(a)<2m+1y(x). Then

P [ P e

Proof. Both sides only concern |f|, so it suffices to prove this for f > 0. Then
2" om<p@y<amsty S Jm < 27 Lgm @) <om iy

Thus, by our previous remark, we may assume that f = )
measurable, pairwise disjoint sets.

mez 2" 1, , where F, are

- > n dA
15001 =p [~ A0l s 215, > A} 5

2m
=p> / MN{z:> 2"1p, > A}yq/l’@
mer, 2m71 7‘L )\
For 2771 <A < 2™ {z: 32", (2) > A} = Upsp, Fo-

q/p

2 d\
~z/2m_lv Sinl] 2

meZ n>m

~ ngq Z ||

meZ n>m

~ 2 [ SR

n>m

a/p

1/p||?

16



We wanted to show that || f||7,q ~ HQmIFmP/pHZgn. So we just need to show that

1/p 1 N .
2m (Zn>m \FM) ~ 12" Fy | /pH%. We have the > direction, so we just need the
> P

other inequality:

1/p
2| 2 B < 2 0 1E
n>m P n>m 2
S22 R Fr gk P g,
k>0

Now reindex the ¢ sum by n = m + k.

S 2 F2 B[P
k>0
SN2 Fnl P

4.2 Lorentz spaces are Banach spaces
Lemma 4.1. Let 1 < ¢ < oo, and let S C 2%, the dyadic integers. Then

q q
SN < (ZN) < (2supN) <203 N
Nes Nes Nes Nes

In other words, if we’re summing dyadic series, when we take the LY norm, it doesn’t

really matter whether we have the g inside or outside the sum.

Theorem 4.1. For1 <p < oo and 1 < q < oo,

1l ~ sup {\ [ f@gla) o

Thus, || - [5p.q is equivalent to a norm, with respect to which LP4(R%) is a Banach space.
Moreover, for q # oo, the dual of LP? is LY under the natural PAITing.

Mol <1}

Remark 4.2. For p = 1,q # 1, there cannot be a norm equivalent to || - [|7:,. Let’s see
this for ¢ = co and d = 1. Assume, towards a contradiction, that | - [|7: . ~ [[-[|. Let
f(x) = 331 74 for N> 1. Then
1 * 1
:sup)\‘{:c: >/\}':2,
[z —nlllpre  A>0 |z —n

17



SO
N

2.

n=1

*

1
|z —nj

1

— =2N.
|z —n

~2

' N
n=1

1,00

Then we have

x'il>z\
'nzllx_n‘ '

We claim that {z : 30" | =L > Llog N} D [0, N]. If # = 0, then 3 1/n > log(N +1) >

n=1 |z—n|

[flZ1.00 = sup A
A>0

%log N. Now do the same with x = 1,z = 2,.... The worst case scenario is when
x ~ N/2, but the inequality holds in this case, too. So we have

N
1 1 1 Nlog N
o > —log N : —log N | > ———.

— 10
So we have shown that Nloe N
* og
~ > .
WA~ e = =
This gives
al 1
Nogn 5l < Y- |2 |~
n=1

Let N — oo to get a contradiction.

Now let’s prove the theorem.

Proof. We may assume f > 0, g > 0. As both sides are positive homogeneous, we may
assume that | f||7,, = 1. We may assume f = ) 2"1lp, and g = > 2"1g, with F,
measurable, pairwise disjoint and F, measurable, pairwise disjoint. Then

L= ([|flIzr.a)?
~ 12" Eal VPN
~ ZQW|Fn|q/p

nez

~ Z Z ona|F, |4/p

Ne2Z n:N<|Fy|<2N

~ ZNq/p Z ong

Neg2Z n:|Fp|~N

By the lemma,

~ Z N4/P Z on

Ne2? n:| Fo|~N

18



~ Z Z 27| F,|1/P

Ne2Z \n:|Fp|~N
Similarly,

1> (lgllra)” ~ S X 2B

Me2Z \m:|Epm|~M

Now
/f(x)g(:c) dex = Z 2"2M F, N By

n,m

$ Y XY wmpm,

NY/ppL/P
N,Me2Z n:|Fp|~N m:|Em|~M

min{N, M} Vat1/d n 1/ m 1/p'
§Z<W> o 2R DT 27 B,

N,Me2Z n:|Fp|~N m:|Ep, |~ M
By Holder’s inequality,
a7 1/q
min{N, M} 1
< — s n /p
~ Z NY/pprL/o Z 2 |Fn‘
N,Me2z n:|Fp|~N
q 1/q
mln{N M} Z 1/0
> Nven 2| Eal'?
N7M€2Z Nl/le/p m:‘Fm|NM
Now we just need oz % < 1. This comes from
N 1/p M 1/p M 1/p N /v
ol (3) () e (B) e () s
M N N M
M M<N M>N
as we get a geometric series.! O

nstead of using Hélder’s inequality and the subsequent steps, we could alternatively use Schur’s test
for convergence of series. This kind of argument will be common in this course.
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5 Banach Space Properties of Lorentz Spaces

5.1 Proof of completeness, duality, and more

Theorem 5.1. For 1 <p < oo and 1 < q < o0,

1[50 ~pg 5uD {' [ s@raw dsl ol <1}

Thus, || - |55 is equivalent to a norm, with respect to which LP4(RY) is a Banach space.
Moreover, for q # oo, the dual of LP? is LY ynder the natural PAITIng.

Proof. Last time, we saw that it suffices to prove the equivalence for functions of the form

f=> 2",

neZ

with F,, measurable, pairwise disjoint, and ||f]|;, ~ HQ”|Fn\1/pH£gl ~ 1. Last time, we
showed that RHS < LHS by testing it on g = > 2™1g, with E,, measurable, pairwise
disjoint, and ||g[|* ,., ~ HZm\EmP/p/qu/ < 1. Let’s show that LHS < RHS.

*
Lr'a
|9~ sgn f

Compare: in the case of LI(R?), we take g = |f||qu_1
q

q—1 /
o= 3 () s,

. Here, we take

Check:
—1 ,
[ @@ dz =32 (215) B

n

- Zan’Fﬂq/p
n

= 2" Ful 7,

~ (1 17pa)?
~1.

It remains to show that | g|| < 1. By the proposition which evaluates the norm as a

dyadic sum,

*
Lpd

% q/ ’ 1!
(lgllyr )" ~ - NI N < gla) < 2N}/
Ne2Z
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Note that {z : g ~ N} = U, 5, Fn, where Sy = {n € Z: 2Ma=1)|F,|9/P~1 ~ N} = {n €

Z : |F,| ~ [N2~™Ma-Dp/(a=p)}

q/p

~ D NTL D IR

Ne2Z neSy

This is a dyadic sum, so we can pull the exponent inside (by our lemma).

~ Z N? Z |Fp| /7

Ne2Z neSy
~ Z (Qn(qfl)‘pmq/pfl)q |F, |7 /7
nez

Use ¢’ = /(g — 1).

~ Z an’Fn‘q’(Q/p—l/p)
nez

~ Zgnq|Fn|q/p

ne’

~ (£ 17pa)*
~ 1.

The RHS defines a norm |||-||. To see that LP? equiped with this norm is a Banach
space, one uses the usual Riesz-Fischer argument.

Step 1: If || fn|| € LP9 are such that ) |||-|| < oo, then there exists a function f € LP4
such that f=> f, in [||-||-

Step 2: For a Cauchy sequence {f,},>1 C LP7, we pass to a subsequence so that

I frnsr = frn ||| < 35~ So by Step 1,
Frn = Foe + 3" foy = Fiy 0 A0 1.
=2

For 1 < ¢ < o0, we want to show that the dual of LP? is P4 Let £: LP7 — R be a
linear functional, so [[€(f)|| < || fll7p.q- For f = 1g with E of finite measure,

((1p) S |BIVP.

So the measure E +— {(1p) is absolutely continuous with respect to Lebesgue measure. So
there exists a g € LllOC such that

(1g) = /g(x)ILE(x) dx.
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As £ is linear, we get
() = [ r@gla)do

for all simple functions f € LP-1.

e Claim 1: Boundedness of £ on simple functions yields g € ',

e Claim 2: Simple functions are dense in LP? if g # oo.

Given these two claims, we get £(f) = [ f(z)g(z)dz for all f € LP9. Thus, the dual of
LP is [P0
Proof of Claim 1: It is enough to show that if ¢ = Y 2™1p, with E,, measurable,
pairwise disjoint, we have
127 Bl g S 1.

~

’ q/_l
Choose f =3, 1<m <2m|Em]1/p> |En|~Y/P1g,,. Then

gq
|m|<M [m|<M

em=/ﬂmmmWwwmﬁWW,, 1l ~ 127 B 7|0
We have ((f) < || ][50, s0

/ /1 —1
127 B[V [l S 1127 B[V,
|m|<M f‘m‘SM

This gives
1277 |, ST
|m|<M
uniformly in M. So g € LP"9 .
Proof of Claim 2: Consider f > 0 and look at fm = fligm<jcom+1y. For 2mtn < k<
2mALHn 1 et -

2m+n+1 -1

k k+1 k
k pr— _1 — pr— —
Finn =1 (<2n 2n )) pmn =D, alE, .

k=2

Then 0 < fr,—@mn < 5. First choose & > 0. If we look at || f||%,.q|[|| fm||Lr ||ea, only finitely
many terms matter, so we can truncate the series. This lets us estimate || f,, — g0m7n||;, ¢

as any large numbers we get will be multiplied by our small step size, 2% O
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6 Hunt’s Interpolation Theorem

6.1 Strong type and weak type

Definition 6.1. We say that a map 7" on some measurable class of functions is sublinear
if

L [T(cf)] < lel|IT f1,

2. |T(f+9)l < T(f) + T (9)]
for all constant ¢ € C and f, g in the domain of T.
Example 6.1. If T is linear, it is sublinear.

Example 6.2. If {T}}icg is a family of linear maps, then

(Tf) (@) = [(Tef) ()l .2
is a sublinear map.
Definition 6.2. Let 1 < p,q < 0o, and let T be a sublinear map.

1. We say that T is of (strong) type (p,q) if there exists a constant C' > 0 such that

ITfllLagey < Cllflle,  VF € LP(RY).

2. If ¢ < oo, we say that T is of weak-type (p, q) if there exists a constant C' > 0 such
that
ITf 0o < Clfllray VS € LP(RY).

If ¢ = oo, we say that T is of weak-type (p, q) if it is of strong type (p, q).

3. If p,q < oo, we saw that T is of restricted weak-type (p, q) if there exists a constant
C > 0 such that

IT1e(fee < CIFIYP( CllLF|7p0)  VF S RY|F| < oo
Remark 6.1.
Strong type (p,q) = weak-type (p,q) = restricted weak-type (p,q).
For the first implication, we have ||Tf||7 g0 S T f||70.a S || fllzr. For the second implica-

tion,
1Tl 0 S ILFlee = 1Lrlliee S ILrl7pn S [FIP.
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Exercise 6.1. For 1 < p,q < oo, let T' be defined on functions on (0, c0) via

(TF)(z) = |2 /s /0 TV f() dy.

Then T is of restricted weak-type (p, q) but not of weak type (p, q).

Remark 6.2. Fix 1 < p,q < oo. If T is of restricted weak-type (p,q), then for any
finite-measure sets E, F C RY,

/I(TTIF)(I)! (@) de S| T1r| G 118G, 0 S [FIVPIE1VY.

Conversely, if this condition holds for all finite measure sets E,F C R? then T is of
restricted weak-type (p, q). Indeed,

/ T1lp(x)g(z)dz|.

IT1F| g ~  sup
loll® <1

Take g = > 2™1p  with E,, measurable and pairwise disjoint. Then

/ T1p(o)g(x)dz| < 327 / TLp(@)| - |15, (z)| da
<N om|F| Ve B, M
SIFYPg]

<PV,

Remark 6.3. If 1 < p,q < oo, then T is of restricted weak-type (p, q) if and only if there
is a constant C' > 0 such that

ITfILace < Clfllzon  Vf € LPHRY).

6.2 Hunt’s interpolation theorem

Theorem 6.1 (Hunt’s interpolation theorem). Let 1 < p1,p2,q1,q2 < 0o with p1 < pa and
q1 # q2. Assume that T is a sublinear map satisfying | T f|pao < HfH*Lp].’1 forj =1,2.
Then, for any 1 <r < oo and 0 € (0,1), we have

" 1 0 1-6 1 0 1-6
1T fl Lo S 1 2eors —=—+ , =—+ .
Do b1 D2 q9 q1 q2

Remark 6.4. 1. If pg < gy, then T is of strong type (pg, qo). Indeed, taking r = gy, we
get
1T fl[z30 S [ flzree S N fllzve-
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2. The condition py < gg is needed to obtain the strong-type conclusion. For example,
let (Tf)(z) = f(z)|z|~*2. Then T : LP(0,00) — L?/(P+2):2(0, 50) boundedly for
any 2 < p < co. But T is not bounded from L? to L2/(1+2) for all 2 < p < co. To
see that T : LP — L2/(P+2):¢ is bounded, we use the Holder inequality in Lorentz
spaces (which we will prove later): If 1 < p;,p2,p < oo and 1 < ¢1,¢2,q < 00, then

1 1 1 1 1 1

I fifellioe S fillzeva |l f1llZr2az » = " + 7 7 = . + .

Then
ITf117 20200 S ] ™ 1/2HL2 soll Flipee SN fllpo.
Take
f(z) = |z| V7| log(x + 1/z)|~P+2)/ (),
We get
d
1F1Zs / |log(z + 1/z)|~@+/(p) &2
x
2n+1
- Z/ log (e + 1/a)| 17/ %
ne”L T
~ Z In| 1P/
nez
< 00
On the other hand,
| do

o0
2p/(p+2) _
A = [ Nogte +1/2)

~ 2 Il

nez

= 0

We know that T : LP1P1 — [2P1/(p142).00 and T . [P2:P2 —y [202/(P242):00 fo1 2 < p; <

p2 < oo. Hunt’s interpolation theorem gives that for all 1 < r < oo, T : LPO" —
L2po/(po+2),r < pe.

p+2

Next time, we will prove the following as a consequence of Hunt’s interpolation theorem.

Corollary 6.1 (Marcinkiewicz interpolation theorem). Let 1 < p; < ¢ < o0 and 1 <
P2 < g2 < 0o with p1 < py and q1 # q2. Let T be a sublinear map that satisfies

1T Al oo S W llprss 5= 1,2,
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Then for any 6 € (0,1), T is of strong type (pg,qp), where

1 0 1-6 1 6+1—6
po p1 p2 w ¢ Q@

We will also prove Hunt’s theorem next time.

26



7 Proofs of Interpolation Theorems

7.1 Proof of the Marcinkiewicz interpolation theorem

Last time, we introduced Hunt’s interpolation theorem.

Theorem 7.1 (Hunt’s interpolation theorem). Let 1 < p1,p2,q1,q2 < 0o with p1 < py and
@1 # q2. Assume that T is a sublinear map satisfying [|Tf| pao S| fI% .0 forj =1,2.
Then, for any 1 <r < oo and 0 € (0,1), we have

*
ij’

1 0 1—-6 1 0 1-6
1T fl Lo S 1 2eors —=—+ ;o —=—+ :
Do b1 D2 q9 q1 q2

Before proving this, we will prove the Marcinkiewicz interpolation theorem as a corol-
lary.

Corollary 7.1 (Marcinkiewicz interpolation theorem). Let 1 < p; < 1 < o0 and 1 <
P2 < qo < 0o with p1 < p9 and q1 # qo. Let T be a sublinear map that satisfies

1T a5 SN fllpess G =12
Then for any 6 € (0,1), T is of strong type (pg,qp), where
1 6 1-06 1 6 1-46
+ + .

Y

pe P D2 w o @

Proof. As p; < q1 and pay < g2, we get pg < qg for all 0 € (0,1). If p; < p2, Hunt’s theorem
yields
1T fI Lo S NfllTpor V1 <7 < o0

Taking r = ¢y, we get
1T fllzso S 1 zrese S [ llzeo-

Assume now that p; = ps =: p. Then

7 limsee S 1Flzs = sup Al [TA@)] > A 5 I,
— leslri@ > ah s ()" s

Similarly,

1T fl Lo SN flle == iUI;AI{l“ T f (@) > A2 Sl
>

— Ieslri@ > ah s ()" s
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‘We now have

> dX
17111 Te0 = Qe/o MRz [(TH(@)] > AH

< /Ooo o min{(\\f;\b)“ | (!M;Hp)”} o
I1£1lp \ Hpr)ql dX 00 <”pr>‘12 dx
5/o g ( A A +/pr A A

S A= + A1
S O

Say q1 < g2.

7.2 Proof of Hunt’s interpolation theorem

Now let’s prove Hunt’s interpolation theorem. Recall that if 1 < p,q < oo, T'is of restricted
weak type (p, q) if
1T (|00 S [FIMP

for every finite measure set F'. We saw that this is equivalent to
/‘TlF(m)HﬂE(x)’ dz S |FI"PIE[MY VE,F < ||Tf|jap S Ifoa Vf € LP.

Proof. Claim: It suffices to prove Hunt for 1 < pi1,p2,q1,q2 < oo. Indeed, for every
0 e (0,1),
ITf o000 S NI

Indeed, for any 6 € (0,1), even if p; = 1 and ¢1 = o0, pp € (1,00). So we can use an
interpolation argument with a slightly modified p; and po: It suffices to see that

IT1E]}, 00 S 1F|P0
for all finite measure sets . We have
T Lp|[7000 = sup NFTEO [{z [T f ()] > A}/ t(=0)/e
A>0

0 1-0
< (sl 1p@) > 00) (suplte T30 > 21)
A>0 A>0

* 0 1-6
= (IT1Fl a0)” (IT1F (70
< |F|1/p1~0|F|1/p2v(1—9)

S|P,
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Henceforth, we assume 1 < p1,p2, q1,q2 < co. We can write

ITf|Izo0r ~  sup
loll*,, <1
L7’

9

[ @) 5@ ds

so it’s enough to show that

‘ / Tf(x)g(z) dx

ST YA mea =19l g0 <1

By splitting into real and imaginary parts (and then positive and negative parts), we may
assume f,g > 0. We may also assume g = > 2™1p , where E,, are measurable and
pairwise disjoint. Caution: As T need not have monotonicity properties, we may not
assume f is a simple function.

Using the binary expansion, we write

fl@)=> 2"an(z),  an(z) € {0,1}.

nel

Note that there exists a largest n(z) such that a, ) = 1 and a,(x) = 0 for all n > n(z).
Also, we don’t allow recurrent 1s. Let {ng(z)}r>1 be a decreasing sequence such that
O, (z)(7) = 1 and all other a,(z) = 0. Then

) = Y20

k>1

For £ > 1, let fy(z) = 2(*). We can write

fo(z) = Z 2" pe, Ff = {z:ny(z) =n).

nez
Then
Fz) = 2@ ygnema(@) 44 gm(@)
> gne(@) | gne(@)+l 4 gne(e)+e-1
— omu(=) (23 ~1)
> fo(x) - 271
So we get

filw) < gy F ().

As LPo" is a Banach space, then ), fr = f in LPo:".
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Now we can tackle the bound:

<> / Tfe(x) [ZmEm(a:)] dz
>1 m

<33 omom / T g ()] L5, (2)]

{>1 n,m€eZ

‘ [ i@t as

<3N oo min{ | B[P B [V | FL NP By V9

{>1 n,m

We will show that this is < 1 next time.
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8 Interpolation and Maximal Function Estimates

8.1 Conclusion of proof of Hunt’s interpolation theorem

Theorem 8.1 (Hunt’s interpolation theorem). Let 1 < p1,p2,q1,q2 < oo with p; < pa and
q1 # q2. Assume that T is a sublinear map satisfying | T f||pao S ||f||*ij71 for 5 =1,2.
Then, for any 1 <r < oo and 0 € (0,1), we have

1 6 1-46 1 6 1-96

1T fl Lo S (1 Zeors —=—+ , —=—+
Do b1 D2 q9 q1 q2

Proof. We may assume 1 < p1,p2, q1, g2 < 0o with p; < ps and g1 # g2. We know
/ITIIF(fC)ITlE(ﬂf)I dx S min{|Fy VP B V5, | Py VP2 | B |92}
Fix 6 € (0,1) and 1 < e < co. We want to show that

1T fll 700 S W f I rorr

uniformly for f € LPo". It suffices to show that

S L

\ [ i@t ds

where || f||7ppr ~ 1 and g = >, 2™1E,,, where E,, are measurable, pairwise disjoint,
and
1 /
lgll% oo~ 127 B | S 1.

We write f = >/, fi, where fo =3, 72" 1p.. We have

<30S omom min{ | FLMP B |V | FEMP B [V
>1 n,m
S X 2R B
£>1 n,mez
-min{|FL|=0A/m=1/p)| g (0=0)(1 /a1 -1/a5)

‘ [ i@t as

|F£|—9(1/p1—1/p2) ‘Em|—9(1/qi—1/q§)}

Using the same trick we have used before, we write this as a geometric series.

SO Y Nt N amMY%BAN, M)

£ N,Me2Zn:|Ft~N m:|EL |~ M

where
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A(N, M) = min{|F{|-00/p=1/p2)| g, _|(1=0O1/a1—=1/a3) | pt|=0(1/p=1/p2)| g, |-0(/61—1/a2)},

rq1/r
| X awan| ¥ e
£>1 | N,Me2Z n:|Ff|~N
rq1/r
SOANM) | 2mMe
N,Me2Z m:| Ep |~M

Note that supy > ysez AN, M) < 1 and suppresz 3 negz AN, M) S 1. Fix M € 27,
Let n(l)/pl_l/m ~ M~(/61=1/4%)  Then

Z A(N,M) = Z NA=0A/p1=1/2) pr(1=0)(1/q1=1/a5) 4. Z N—O0O/p1=1/p2) jy—0(1/d1—1/d3)

Ne22 N<No N>Ny
Thus,
ry 1/r ry 1/r

[rie@and sSAY (X 2w ) bSO

>1 N n:|Ft|~N M m:| Ep|~M

1/r 1/r
o3 (Seimrn) (S
£>1 n m
“féHngﬂ“ ”9”2(]{9”/
S Y M fellrer
>1

Since | fo| < 5411/l

S fllzeer
~ 1. O

Remark 8.1. We did not use anything specific about Lebesgue measure in our proof. So
these theorems hold for arbitrary measures p.

8.2 Maximal and vector maximal functions

Recall the Hardy-Littlewood maximal function

1
M (@) = sup e /B L iy

r>0
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Theorem 8.2.
1. If f € LP(R?) for some 1 < p < oo, then M f is finite almost everywhere.
2. M is of weak-type (1,1) and strong-type (p,p) for 1 < p < oco.

Remark 8.2.

1. M is not of strong-type (1,1). Let ¢ € C°(B(0,1/2)). For |z| < 1, My(x) ~ 1.
If || > 1, then Mp(z) ~ ﬁ. So My(z) ~ (x)7¢, where this notation means
(x) :== (1 + |z>)Y/2.2 So My ¢ L'

2. M is of weak-type (1,1) means

s M) > 2} 5 121

uniformly in A\ > 0 and f € L'. The decay in X on the right hand side cannot be
improved. To see this, consider ¢ as above. Then My € L, so only the small A are
relevant. For small ),
—d
{z: Mf(z) > A} = [{z: (2)7" 2 A}

={z: (z) SATVY

<AL
Also, My ¢ LY9(R?) for any q < co because

. > d\
[Mpl71,4 N/o Mz Mo(x) > A} - = o

A

Theorem 8.3. Let w : R — [0,00) be a locally integrable function (a weight), to which
we associate a measure via

Then
1. M : LY(Mwdzx) — LY (wdx) maps boundedly; that is,

wl(o: Mf() > M) £ 5 [ 1F@)I0M)w) dy

2This is known as “Japanese bracket notation” everywhere except Japan, where they just call it “bracket
notation.”
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2. M : LP(Mwdzx) — LP(wdx) boundedly for all 1 < p < oco; that is,
[ s iz < [15@POm)0)

Remark 8.3.
1. If w =1, then Mw =1, so we recover the previous theorem.

2. In order for the statement to be non-vacuous, we need Mw is finite somewhere. This

happens precisely when T% f|$‘ <, w(z)dr < 1 uniformly for sufficiently large r.

(= ): If x = 0, we are done, so assume z # 0. For r > 2d(x,0),

1 1
Bz, 7)| . )W(y) dy 2 — w(y) dy.

Mw(z) >
r? Jia<r/2

( <= ): Choose z to be a Lebesgue point. The Lebesgue differentiation theorem
controls the maximal function at small scales, and the same argument controls the
maximal function at large scales.
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9 Boundedness Properties of The Hardy-Littlewood Maxi-
mal Function and A, Weights

9.1 Boundedness properties of the Hardy-Littlewood maximal function

The Hardy-Littlewood maximal function is given by

1
M = _— dy.

Theorem 9.1. Let w : R — [0,00) be a locally integrable function (a weight), to which
we associate a measure via

Then

1. M : LY (Mwdz) — LY (wdx) maps boundedly; that is,

wlfo: M) > ) £ 5 [ 1F0)I0) @) dy

uniformly in X > 0 for all f € L*(Mwdz).

2. M : LP(Mwdzx) — LP(wdx) boundedly for all 1 < p < oco; that is,

/WﬂM%wa/V@me@@

uniformly for f € LP(Mw dx).
Just like the proof of the maximal inequality, we will start with a covering lemma.

Lemma 9.1 (Vitali). Given a finite collection of balls {B(xj,7;)}je, there exists a sub-
collection S such that

1. Distinct balls are disjoint.
2. Ujel B(zj,rj) C UjeS B(xj,3r;).

Proof. We run the following algorithm. Set S = @.
1. Choose a ball of largest radius and add it to .S.
2. Discard any balls that intersect balls in S.

3. If no balls remain, stop. Otherwise, return to step 1. O
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Now let’s prove the theorem.

Proof. First note that M : L>®°(Mw dz) — L*(w dz) boundedly:

Mfllpowdry =  inf sup Mf(x
M e =, inf | sup MF()

Since w is locally integrable, it takes Lebesgue-null sets to w-null sets.
< inf sup Mf
E:|E|=0 zeEe ( )
< NNl oo ()

= inf sup
E:|E|= Oerc‘ @)

Mw > 0 unless w = 0, so
= inf su x
E:(Mw)(E)=0a:e£c (@)

= HfHLOO(dea:)'

So by the Marcinkiewicz interpolation theorem, it suffices to prove M : L'(Mw dx)g L} (w dx).
Fix A > 0. Let K be a compact subset of {x : M f(x) > A} (this suffices by regularity).
For x € K, there is some r(z) > 0 such that

1
|B(z,7(2))| JB(2)

Now K C J,cx B(x,r(x)), and by compactness, there exists a finite subcover such that
Uje g B(xj,7;). By Vitali, there exists a subcollection S of pairwise disjoint balls such that
K C Ujes B(zj,3rj). Sow(K) <3 ;cqw(B(z),3r5)).

For Lebesgue measure, we would just pull out the constant 3 and add the measures.
But here, we don’t have that property, so we will relate it to the maximal function. For
z € B(xj,rj),

|f(y) dy > A

w(B(aj,315)) = L<3“@d

]B T 473 |
|B x 4Tj m4r]

< 44| B(x, 4r))| Mw(z).

Now integrate this against f:

w(B(z;,3r))) / |@<M/ Mo(@)|f ()l dy. O
SUJ,T‘] | B(xj,rj) B(zj,rj)
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Remark 9.1. Rather than placing the weights outside the maximal function, one could
place them inside: Define

1
M, f(x) = sup W(B(z.7) /B(J:,r) |f ()] du(y),

where p is a nonnegative measure. If 4 is a doubling measure (i.e. if By = B(x,r) and
By = B(z,2r), then u(By) < p(Bi) uniformly for € R? and r > 0), then with small
modifications, the proof of this theorem yields:

M, : L*(dp) — LY*°(dp), M, : LP(dp) — LP(dp), VY1 <p< oo

boundedly.

9.2 A, weights
Can one characterize the nonnegative measure p for which

M : LP(dp) — LP(dp), l<p<oo
boundedly? Yes, these are the A, weights.

Definition 9.1. We say that a locally integrable weight w : RY — [0,00) satisfies the
A; condition (and we write w € Aj) if there is a C > 0 such that Mw(z) < Cw(z) for
almost every z.

Remark 9.2. If w € Ay, then the theorem yields
M : LP(wdx) — LP(wdx) M : LY w,dz) — LY (wdz) Vli<p<oo
boundedly.
Let’s characterize these weights.
Lemma 9.2. The following are equivalent:
1. we Ay

2.

51 [, 5 e

uniformly for a.e. x € B and all balls B.

1 1
= < -
B /Bf(y) WS LB /Bf(y)w(y) dy
for all balls B and all f > 0.
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Proof. (1) = (2): Fix x with Mw(x) < Cw(x), and let B be a ball of radius r that

contains x. Then
2d
y)dy < / w(y) dy
|B‘ / ( 2T)| B(z,2r)

< Qde(x)
< 29Cw(x).

(2) = (3): w is bounded below by its maximal function, so

st e an= gy [ (g =)
>W/Bf(y>dy

(3) = (2): Let x be a Lebesgue point for w, and let B > x. Let r < 1 be such that
B(z,r) C B. Set f = lp(,). Then

1 1
@S o [ e
‘B| w(B) B(z,r)
Rearranging this, we get
w(B) 1 /
< w(y)dy — w(z). O
’B| |B($,’I”)| B(z,r)

Definition 9.2. We say that a weight w : R? — [0,00) satisfies the A, condition for
1 < p < oo if there exists an A > 0 such that

y p/p’
su w(y) P/Pd < A,
g e [|B\/ ) y} =

sup |B|Pw(B)|jw /=D Pt
sup (B ()| 5

or equivalently,
< A.

Remark 9.3.
1. This condition is invariant under w — Aw and w(z) — w(Ax).

2. we Ay ifand only if 0 = w PP e Ap. Indeed, the condition reads:

1 , p/p
swp o [ ay| [ o] <a
balls B | B[P B

If we raise everything to the power p’/p,
1 , p'/p ,
sup p,/ a(y) dy [/ o(y) PP dy] < AP'/P,
valls B | BIP" /B B
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10 Characterization of A, Weights

10.1 A, weights for p > 1

Last time, we began to tackle the problem of characterizing nonnegative measures p for
which

/ M ()P du(y) < | F(olP dia(p).

uniformly for f € LP(du) and some 1 < p < co. We will not prove the full details, but we
will give a compelling intuition of the results.

Fix 1 < p < oo. Recall that a locally integrable weight w : R — [0, 00) satisfies the Ap
condition if there is an A > 0 such that

y p/p
su w P/P(y) d < A.
ballspB |B| / [\B| / @) y] -

This is equivalent to
sup yB|*pw(B)Hw*1/(p*1>||§;(1R) < A.
balls B

Remark 10.1. If 1 < p < ¢ < 00, then A, C A;: Let w € Ay. Then by Holder,
o™ @ 1y < Nl ™9 M| gm0 | BT/
_ 1)/(q—1) _
= ||V P~ 1)”5:;)1(3) =1 g|a-p)/(a=1),
So we get

Bl %w(B) w0 < | Bl Pw(B) o I, S 1

uniformly in B.

Lemma 10.1. Fiz 1 <p < oo. Thenw € A, if and only if

[\}9, / f(y)dy]pf,w(lB) [ 1wt dy

uniformly in f > 0 and balls B.
We proved this last time for p = 1.

Proof. It remains to consider 1 < p < oc.

(=)
s ] [y L]
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/

/
<1817 [ Ifretdy | [w(y)p;’/p dy|
————

<IBIP-1/w(B)

(<=): Fixe > 0 and a ball B. Let f = (w+¢)"?/P. Then

/

5 Lt ] s s [ e eway

1 i
< W<B>/<“’+€> H(y)dy

Note that p' — 1 = —p'/p.

1 / o
S —— [ (w+e)P/P(y) dy.
5 L9 w)

So

) p/p

Blred) | [ @ P <1
B

uniformly in B and € > 0. Let ¢ — 0 and use the monotone convergence theorem O

Corollary 10.1. Fiz 1 <p < co. Ifw € A, then w is a doubling measure.

Proof. Let B = B(z,2r) and f = 1g(; ). Then

[ |B(z,7)| r < w(B(z,r))
|B(z,2r)|| ~ w(B(z,2r))

uniformly in z € R? and r > 0. ]

Remark 10.2. In fact, A, weights with 1 < p < oo satisfy a “fairness condition”: If
F C B, then taking f = 1p, we get

<

Bl ™ w(F)

So if F'is a large chunk of the ball B, w has to give a large proportion of the measure of
the ball to F'; it has to treat F fairly.
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10.2 Proof sketch of characterization

Theorem 10.1. Fiz 1 < p < oo. Then w € A, if and only if

/ M () Peo(y) d < / £ @) Pwly) dy

uniformly for f € LP(wdx) (that is, M : LP(wdx) — LP(wdx) boundedly).

This answers the question we proposed but only in the case that w is a weight; i.e. w
is absolutely continuous with respect to Lebesgue measure.

Remark 10.3. ( <= ): The necessity holds under even weaker assumptions. If M :
LP(wdx) — LP*°(wdx) boundedly, then w € A,,.

Proof. (<= ): Fix a ball B of radius » > 0. Fix ¢ > 0, and let f = (w +¢)?/?1p. For
r € B,

1 ,
M f(z) = su / w—+e) P /Plg(z) dx
/@) nso |B(z, R)| B(a:,R)( ) 5(7)

1 _
2 (B Jyle 70
1 /
:2(1|B|/B(W+5)p/p(y)dy

Let’s give this a name

Now

w(B) < w({z: Mf(z) > \})
< Jpw+e) P (ywly) dy
S Vi
_ Jpw+o) () dy
™ [fplw+e) P /r(y) dylp

So we get that
p/v'

\B|Pw(B) [ [@rerrwa] s =

Remark 10.4. ( = ): The sufficiency, that is, w € A, = M is bounded on L”(w dx),
rests on three ingredients:
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1. If1 < g < o0, then M : LY(wdx) — L¥*°(w dx) boundedly (this is Homework exercise
10). Look at
1
wax=sup/ f(y)|w(y) dy.
(w) = sup B B(w)l () |w(y)

Then M, : L' (wdz) — LY*(w dx) boundedly. Then

“;,/Bf(y) dy

p 1 »
S o5 /B F@)Pwly) dy,

which tells us
IMfIP < Mu(|fIP)-

2. (Appears in Ch5 of Stein’s Harmonic Analysis textbook?) A reverse Holder inequality:

fwe A = U1§p<OO A, then there exist and r > 1 and ¢ > 0 (both depending on
w) such that

1 T Lr C 7"
[’m/Bw ) dy] = B]/Bw(y)dy < |B|Y lwllrBy < cllwllLi(p)-

This implies that if w € A,, then w € A, for some ¢ < p.
Ingredients 1 and 2 give M : LY(wdz) — L%*°(w dz) boundedly for some ¢ < p.

3. The Marcinkiewicz interpolation theorem with M : L>®(wdx) — L (wdx) (use the
fact that |E| =0 <= w(E) =0since w >0 a.e. asw € 4,).

Next time, we will discuss how this generalizes to arbitrary measures, not just ones
absolutely continuous with respect to Lebesgue measure.

3This book is the bible of Harmonic Analysis.
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11 A, Weights and The Vector-Valued Maximal Function

11.1 Use of reverse Holder in the characterization of A, weights

Last time, we proved the following theorem:

Theorem 11.1. Fiz 1 < p < co. Then w € A, if and only if M : LP(wdx) — LP(wdx)
boundedly.

We showed that ( <= ) holds if L : LP(wdx) — LP*°(wdzx). For the (=) direction,
we had 3 ingredients:

1. M: LY wdx) — L¥>®(w,dz) for all 1 < ¢ < co.

2. A reverse Holder inequality yields if w € A,, then w € A, for some g < p.
3. M : L*®(w, dz)L*°(w dz) boundedly.

The reverse holds inequality says

Lemma 11.1. Ifw € Ay, then there exist an v > 1 and ¢ > 0 such that

(1), ”dy>w < 7,

We will not prove this. Here’s how we use it:

Proof. Apply this to o(y) = w(y). Recall that w € A, <= o € A,. Then there exist
r > 1 and ¢ > 0 depending on ¢ (and hence on w) so that

1 L v ¢ .
[ [ vt P/pdy} < i e ay
B B

| B
So we get
A, Lo (L [ wwrra)” <
w € <:>sup B(/wy_ dy) S
B 1Bl /B
1 - |B| p'/p |B| 1/(p—1)
o b eias (LY (1
5] /) “(B) o(B)
We get
1/r B 1/(p—1)
s (e )5 (i)
B ([ ) 5
Write
P r 1
7“p/p—fz/q<:H“p_1—7q_1

43



We get

Sow € Ay

Theorem 11.2. Fiz 1 < p < oo. If du is a nonnegative Borel measure such that M :

p—1
= a-1="—<p-1
p

-1
= q:1—|—pT€(1,p).

11/ (1) y q/q'-1/(p—1) ]B\ 1/(p—1)
—q/q"-1/(p— —q'/q <
B ( [t dy) < (w(B))

q/q
Bl De(B) ( [ oty dy) <1
B

LP(dp) — LP>°(dp) boundedly, then dp = wdx and w € Ap.

Proof. 1t suffices to show that du is absolutely continuous with respect to Lebesgue mea-
sure. Write du = wdx + dv with dv singular with respect to Lebsegue measure. Let K be
a compact set such that |K| = 0 and v(K) > 0. For n > 1, let U, = {: d(z,k) < 1/n}.
Note that Up, \ K 2 Upt1 \ K and (U, \ K) = @. Let f, = ly,\k, 50 far1 < fn and

fn— 0.

We claim that du is finite on compact sets. Assuming the claim, by the monotone

convergence theorem,

For x € K,
As |K| =0,
Then

/ FalP da 222550,

M fn(z) =sup ——
) = S B S

1
> -
Bz, 1/n)| JB@,1/m)

1
Bl 1/n)| /K Lis(a,1/m) () dy

1y, \x(y) dy

1y, (y) dy

1
= W /Rd 11B(:Jc,l/n)(y) dy
=1

n—oo

W(K) < p({e : Mfa(z) > 1/2}) < / ful? dp 225 0,
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so we get a contradiction.
Now we prove the claim. Let E be a compact set such that 0 < u(E) < oo.

1
M1g(x) =su / 1 d
E( ) 7”>Ig ]B(x,r)| B(z,r) E(y) Y

|E]

>
~ ld(z, E) 4 diam(E))]4

So M1 g is bounded from below uniformly on compact sets: if F'is a compact set, then for
rx e F,

] = C(F,E).

M1 < =
2@) 3 {Gist(F, B) + diam F + diam E]?

Then

uF) < ({o3160) > JOE B} ) S [ Le@P dut) Se n(B) <o,

11.2 The vector-valued maximal function

Definition 11.1. Let F': R? — 2| f(x) = {fn(2) }n>1. We write

1/p
@) = WDzl Sl = ( [ 1P ds)
The vector-valued maximal function is

Mf(z) = [{Mfn(@) }nz1lle2-
Theorem 11.3.
1. M is of weak-type (1,1).
2. For 1 <p < oo, M is of strong type (p,p).
Remark 11.1. We no longer have a trivial L> bound. In fact, it fails. Take d = 1. For
n > 1, take fn, = Lpgn-1 9n).
@)= > 1fal2(@) = Lp o) (@) € L

n>1

For |z| < 2™,
1 T+r

M n = - 1 n— n
fn(2) RS B ) (y) dy
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1 1.+2n+1
/ Lign-1 on) (y) dy

> -
- 2.on+l _on+1
1 n—1

=g i’
_1
=3

Now

So Mf ¢ L°.

Remark 11.2. Boundedness of M on L2 follows from the scalar case:

7 = [ S 1M A = S M Al S Y 1l

n>1 n>1 n>1
=3 [ 1@ Pde < [ 1£@)da = [ ]2
5oz | L

Let’s prove boundedness of M on L? for 2 < p < co.

Proof. If w > 0 with w € L{ , then

loc?
[ a5 Puds s [ 1 010) ds
uniformly in n. Summing in n, we get
[ BTr@ P s 5 [ 7@ (M) @) de

Then
IBTF125 = 3T 2] 100
— s / T £ () () da
I, 2y <1
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< swp / F@)]? (Mw)(2) da
ol oy <17 S~
eLr/?2  cL®/2)

S Pz sup [[Mwl| g2y
wll, (p/2yr ST~

Sl p /2y
2
S Iz
To prove M is of strong-type (p,p) for 1 < p < oo, it suffices (by Marcinkiewicz) to
show that M is of weak-type (1,1). O

We will use the following.

Lemma 11.2 (A Calderén-Zygmund decomposition). If f € L*(R?) and A > 0, then we
can decompose f = g+ b such that

1. |g(z)| < X for almost every x € R,

2. supp b is a union of cubes whose interiors are pairwise disjoint and

1
A< — [ |b(x)]dz < 29N
Qkl Jo,

3. g=f[1-1yg,l-

Next time, we will prove this decomposition and use it to prove the weak (1, 1) bound.
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12 Calderéon-Zygmund Decomposition and Bounds for the
Vector-Valued Maximal Function

12.1 A Calderéon-Zygmund decomposition

Lemma 12.1 (A Calderén-Zygmund decomposition). If f € L'(RY) and A > 0, then we
can decompose f = g+ b such that

1. |g(z)| < X\ for almost every x € R,

2. suppb is a union of cubes whose interiors are pairwise disjoint and

1
< — b(x da:§2d)\.
Ol Qk! ()]
3. g=fI1-10,.

Remark 12.1. 1. Interpolating between the first conclusion and g € L', we get g € LP
forall 1 <p < 0.

2. 2 1@kl ~ 5 Zk Ji ka b(y)| dy, s0 32 Qx| S }\HfHLl-
Remark 12.2. Modifying ¢ further, we can ensure that | 0w b(y) dy = 0 for all k. Indeed,

let
o(e) = {f(x) v ¢ Uy Qx
|Qkl ka y)dy € Q.
Then for x € Q,
1

b(x) = f(z) - 12l Jo

f(y) dy,

/b(x)dx: f@yde — | fly)dy =
Qk Qk Qk

We lose a factor of 2 for the constant:
1

Qx| Jq, !Qk! Qn
The price we have to pay is that [g(z)| < 29\ instead of .

Proof. Decompose R into dyadic cubes @ = [2"k1, 2" (k1 + 1)] X - -+ x [2%kq, 2"(kq + 1)],
where n is sufficiently large so that
1 /
[F(y)ldy < A
Ql Jg

Fix such a @ and subdivide it into 2¢ congruent cubes (cut each side in half). Let @’
denote one of the resulting children.

b(z)| dx < |f(x)|dx < 29F1\,
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If ﬁ fQ/ |f(y)|dy > X, stop and add Q' to the collection Q.

o If @ fQ’ |f(y)| dy < A, then continue subdividing until (if ever) we are forced into
case 1.

If we are in case 1, then

1 9d .
< ,Q,,/Q, F)ldy < @,/Q!f(y)!dy <20y

It remains to show that g = f[1 — 1,q,] satisfies [g| < A a.e. Fix a Lebesgue point
xz ¢ |JQy for f. Then
< g1, - 1@l ds

’m/f dy - fl

for any cube, we can inscribe a ball in side it and we can circumscribe a ball around it.
Letting r ~ diam(Q),

1

<= — d
r—00 0
So .
fa)y="lm /Qf(y) dy,
diam Q—0
and we get |g(x)] = |f(x)] < A O

12.2 Weak-type bound for the vector-valued maximal function

Recall that for f: R tof? with f = {f,}n>1, the vector-valued maximal function is
Mf(z) = {M fa}n>1lle-
Theorem 12.1.
1. M is of weak-type (1,1).
2. For 1 <p < oo, M is of strong type (p,p).

Proof. Last time, we remarked that we need only prove part 1. Fix f € L' and A > 0. We
want to show that

s DTf(@) > )] < 12
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Decompose f = g+ b with |g| < X a.e., suppb = |, Q, and |Q71k‘ ka flb(y)| dy ~ A. Then
{z: Mf(z) > A} < {z: Mg(x) > X/2} + [{z : Mb(z) > A/2}].
By Chebyshev,

Mgl _ llgl3 - Miglsr - 51z

- M <

It is left to show that

{z : Mb(z) > \/2}| < HfﬂLl

We have . T
Slea <2 Y1l ~ 305 [ iy s
k k L Qk
We have to show now that
o€ J@@u : Mb(x) > a2} < 112

For z ¢ J(2Qk),
Mbn(x) 7‘>0 |B xz,r ‘ / (z,r) |dy

bn Yy dy
= sup |B<a: Al Z/B(z,rmk' )l

If B(z,r) N Qy # 3, then r > £(Q)/2. So Qr € B(x,r +Vdl(Q)) C B(z,r(1 +2V4d)).

<4 sup d
dr>0 |B(x, r(1—|—2\/> Z/ (2 (142v/) bn(y)| dy

1
< sup < | n(y)ldy> dz
r>0 | B(z,7(1 4+ 2vd))| JB(ara+2va) Z a2 Q| Jq,
Let b3 =3 1g, ia a5 Jo, [n(y)| dy. Then we have
Mby(z) < MBS (z).

Let 52V& = {bavg}n>1 For z € Qy,

07 (2)] = [{bR"* (@) }alle < N / y)ldy S A
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We also have

16 =3 / b dy < [l
r Y Qk

By Chebyshev, since Mb(z) < Mb*>8(x),
{z € \J@Qw)] : Mb(x) > A/2}| S [{z € [ J2Qw)] : Mb™® 2}
1 —
< IS 2,

_ I

bavell )
< I ¢ Wl .
Remark 12.3. One can replace £2 by £9 for 1 < ¢ < oo for f : R toell?. Define
M, f(2) = [{M fo @)}z
Then
1. M, is of weak-type (1,1).
2. M, is of strong type (p,p) for all 1 < p < oco.

The proof is as in the case ¢ = 2 if 1 < ¢ < oo. The trivial estimate becomes that

Mg, : L% — L% is bounded. If ¢ = oo,
Moo f < M|{fn}nzlle-

The estimates follow from the scalar case.
If ¢ = 1, then these estimates fail. We will see an example next time.
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13 The Hardy-Littlewood-Sobolev Inequality

13.1 Failure of bounds for L! vector-valued maximal function

Let f:RY — (1 f = {fu}n>1 with |f(z)] = > n>1 [fn(7)]. We define the L' vector-valued
maximal function as M1 f(x) = > n>1 M fn(x). The the following claims fail:

1. [{z: My f(z) > A} < ;|| fllr uniformly for A >0, f € L.
2. For 1 < p < oo, |[M1if|rr S| fllLe uniformly for f € LP.

Fix d = 1. Take [0, 1] and subdibide it into intervals I, ..., Ix of equal length. Let

ﬂ]n ISTLSN
fn:
0 n > N.

Let f = {fn}nZL Then

\—Z’fn ) =1pyx) e LP  V1<p<oo,

n>1

Ifller =1 V1<p<oo.
On the other hand,

For = € [0,1], M f(x) > ZLZ/EJ 2(n1/N) -+ 2 log(NN). This tells us that

— 1
{z: Mif(x) > TologN}\ > 1,
|M1f|L» = log N.

13.2 The Hardy-Littlewood-Sobolev inequality

Theorem 13.1 (Hardy-Littlewood-Sobolev). Fiz 1 < p < r < oo and 1 < g < oo such
that 1+ 5 = & + 2. Then
1f = gllzr < (1 f1pllglzace,
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uniformly for f € LP, g € LY. In particular, for 0 < a < d,

1
Hf*w < flles

LT
provided 1 + % = % + 9.

Proof. Fix g € L9*°. We may assume that ||g||j¢. = 1. We want to show that the

sublinear operator f KN f * g is of strong type (p,r). By the Marcinkiewicz interpolation
theorem, it suffices to show T' is of weak type (p,r) for all 1 < p < r < oo such that
14+ 1/r =1/p+1/q. Say the target is strong-type (pg, o). Then choose 1 < p; < py <
p2 < oo and write % = p% + 1;29. By Marcinkiewicz, if T is of weak-type (p1,71) and

P
(p2,72), then T is of strong-type (po,7), where

1 6 1-9 11 11 11 1
S=—+4 :9[++—1}+(1—9)[+—1]:++1:.

T T T2 p1 q D2 q DPo q To

Let’s show T is of weak-type (p,r):

ol x gl > 15 ()
We may rescale so that || f|l, = 1. Write g = g1 + g2 = glyjg)<ry + 91l{jg>r}- Then
Kz [(f *g)(@)| > AH S Kz [(f *g1)(@)] > A/2} + [z < [(f * g2) ()| > A/2}]
By Chebyshev,

H{a: |(f *g1)(2)] > A/2}] < ”f;gl”z

B E—
)\S

) (ps+p—s)/p
A (/ apS/(p8+p_8)]l{|91|>a}m>
0 (6%

. R P dov (ps+p—s)/p
— (/ o5/ (vsp )ﬂ{9>a}a)
0

R
= A (||g] e ) PP/ ( / o/ sp—s)—a 9
0

2

(07

) (ps+p—s)/p

< )\stsfq-(szrp*S)/p’

Provided % > 1+ % — =. Since 1 + % = % + %, this means that s > r.

D=
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On the other hand, by Chebyshev,

o |(f * g2)(2)] > N2} < ”-’”*;32”5

< I lplgal

([Tl > ablda )

[e'e) P
<A (g0 )™ ( [ d:c)

< A PRO-9P,
Optimize in R:
)\—sRsqu(H»l/sfl/p) _ )\*pR(lffl)P
A\P—s = RU=a)(p—s) pa/p-(p—s)
\ = Rl—ata/p — Ra(1/q+1/p=1) _ pa/r.

So we optimize at R = A"/4,
So
{z 2 |f *gl(@) > A} S A7PAT/0p(70)
< \Pr/atr)
< \pr(/r=1/g+1)
< \~Pr/p
<A O
Although we have just proven this claim, here is Hedberg’s proof of || f * ﬁ”"‘ S fllp
whenever0<a<dand1+%:%+%.

Proof. Fix x € R% Then

<f - |1|) = |wf—(yzj|a = /u_y@ |mf—(yy)|a ot /|R |xf—(yy)|a !

fy) fy)
d d
‘/ht—ySR |:17 - y|a y| = Tz: /Rgr—y|§2r |ZL‘ - y|a Y

€2”
r<R

. I
S 2T g g eeanl W] dy

r<R
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< RUTOMf(x).

On the other hand,

/ fy) ay| = ‘f* Lijo)>R) ()
|lz—y|>R ’x - y’a ‘x|a

1 z|>R
<l || =R
P

o]

oo,rdfl

Sy -
d/p'—

S Il R4~

< I llpRI e/
S IfllpR=.

/

Optimize in R: choose
R"CMf(2) = |If R

R/ — pili—a/d+1/r) _ M,
Mf(x)
So

fo Y @l sty (LY < ar g e
() @] = (37

So

e
B

SN

S A
S I fllp-
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14 The Sobolev Embedding Theorem

14.1 Fourier transforms of tempered distributions

j/e—wﬂMdi—awzdt,

Fix 0 < a < d, and consider

t

If we let u = 7|z|?t, then this equals

0o (d—a)/2 oo
/ e (Y du _ (a-ayj2_1 /‘eﬂﬁwwmmb
0 7|z|? u |4~ Jo u

_ —ldayep(d-a) 1
2 |x|dfo¢

We regard 7~ (¢=)/21 (d*Ta) W% as a tempered distribution, that is an element of

S'(RY). These are linear functionals on S(R?).
For T € &'(R%)givenby a density ¢,,

T(f) = / f(@)p() da.

In our case,

(e (52) )= (£52)

Since f is a Schwarz function, this integrand has the right decay at oco. We have

E f(a) f()
[ e S‘/M 27 | ([ e

1 —(d—a
< ||f||oo/|x|dadx+ ||| oo (0.

+

Definition 14.1. For T € §'(R%), we define its Fourier transform by

T(f)=T(f), feSRY).

Let’s compute the Fourier transform of 7—(d=®)/21 (d_Ta) Pk

A —~
(oS5 e (57) |
d— —2mix-€

:W(da)/2r< . a> // elx!d*“ £(€) dx de

o6




_ /oo // e—wt\x|2t(d—a)/26—27riz-£f(£) dx d¢ @
t
0

We already know the Fourier transform of a Gaussian.

* _d)2 )t o dt
_ /D / 2o ~/2 I 00012 ) g &

T sl a2 di
| e

Make the change of variables u = 7|¢|?/t.

[ o ()

1 o d
-/ T / e PR (g) de

- [ ~a/2(a/2) W] ()
Remark 14.1. Take d = 3 and o = 2:
1\ 1
< *1/2r(1/2)| |> = w’lf(l)@.

That is,

1\ 1
or|z| ) 4m2?|¢|?’

This allows us to solve Poisson’s equation: —Awu = f. If we take the Fourier transform,
this is R

am?(¢fa(e) = f(9),
SO )

u(§) = Wf (&)

Taking the inverse Fourier transform, we get

1

- 47 |x|

To make everything rigorous, use

o If T € S'(RY) and f € S(RY), then T+ f € S'(R?) is given by (T f)(9) = T(fr * g),
where fr(z) = f(-2):

(T % )(g) = / (0% N)(@)g(x) da
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~ [[ st~ wg(e) daay

=T(fr *g).
o If T € S'(RY) and f € S(RY), then T + f = T7.

14.2 Sobolev embedding

Definition 14.2. Fix s > —d and f € S(R?). Then |V|*f € &'(R?) is defined by its action
on the Fourier side:

(VI 1)"E) = @rle) F(©).
Theorem 14.1 (Sobolev embedding). For f € S(R?) and 0 < s < d, we have

1fllg < V£l

whenever =1 + 5+ The implicit constant is independent of f.

What does this say? It says that if s derivatives of f live in LP, then the function must
be more regular/smooth (it lives is a higher LP space).

Proof. By duality, || f[l; = sup s=1 (f,g). The idea is that by Plancherel,
L

-~

(£,9) = (1,8) = ((2r|&])* ], (2ml€ 75 (€)),

where the first argument is in S’.
We claim that F = {g € S'(R?) : § vanishes on a neighborhood of 0} is dense in LY.
It suffices to show that F is dense in S(R?) in the topology of LY. Fix gy € S(R%). Fix

e >0and p € CX(B(0,2)) with ¢ =1 on B(0,1). Define g-(§) = go(§)(1 — p({/e)) € S
Then g. € F. Then gy — g- = go(-/€), s0 go — ge = go * sdcpv(g ).

g0 — gellg < llgollalle®e” (e )y
< |lgolle?=44

e—0
0.

Then

Ifllg=sup  (f,9)

9eF:lglly =1

= sup <(27T’§) (271"5‘) >

geF:lgllyy=1
€S €S

o8



= sup ([V['f,|[V™)
geFllgly =1 e
€S’ €S
S sup |[[VEfllp - Vgl

~

g€ F:lgll =1

We have
_ N 1
V| ™?g = [(QW\Q)—SQ]V ~ W *9,
SO
1910l ~ | e | % ol
|95 % g,
by Fardy—Littlewood—Sobolev, provided 1 + 1% = % + %. We can rewrite this condition
1 s
as = ===232
p g d
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15 Riesz Tranforms and Calderén-Zygmund Convolution Ker-
nels

15.1 Riesz tranforms
Last time, we proved the Sobolev embedding theorem:

Theorem 15.1 (Sobolev embedding). For f € S(R?) and 0 < s < d, we have

1fllq S WVIFllp
whenever % = % + 5. The implicit constant is independent of f.

In particular,
£l SNVl =t
i Poop g d
However, the Fourier transform is not a local operator; it looks at the whole function.
However, we can ask whether it is true that
1 1 1
< IV T,z
1Al SUVS =24

with 1 < p < ¢ < co. This would follow from boundedness of the Riesz transforms on LP
for 1 < p < 0.

Definition 15.1. For 1 < j < d and f € S(R?), we define the Riesz transforms as

7O =my(©f(€) = T Fe.
In other words, R; = —%.
We write
d
2mlé| = ) my(€) - 2mig;.
j=1
So ]
V=Y R0
j=1
Then

d d
1fllg S WVl < D IR0 F11 S D 185F 1o S UV Fllps

J=1 Jj=1
if we knew the Riesz transforms were bounded on LP. (The last step comes from the fact
that all finite dimensional vector space norms are equivalent.)
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Remark 15.1. If we knew that the Riesz transforms are bounded on L? for 1 < p < oo,
we could also conclude that the solution u to the Poisson equation —Au = f satisfies
0j0ku € LP whenever f € LP. Indeed,

Stk g T

(9;0ku)" () = —4m°&;&u(€) = ]2 f(&) = m;(§)mr(§) f(§)-

So a]aku = Rijf.
How do we prove boundedness of Riesz transforms?

Definition 15.2. A function K : R?\ {0} — C is a Calderén-Zygmund convolution
kernel if it satisfies:

L. |K(2)| < |z|~¢ uniformly for |z| > 0.
2. fR1<|x‘<R2 L(z)dx =0 for all 0 < R; < Ry < oo (cancellation condition).
3. f‘x|>2|y‘ |K(z +vy) — K(x)|dz < 1 uniformly for y € R? (regularity condition).

Example 15.1. The Riesz tranforms correspond to Calderén-Zygmund convolution ker-

nels.
(d—1/2)
g v vy L | m WD ((d - 1)/2) j
=g = k) = mit) = %ajl T 121(1/2) 4 Tgdr T
‘We have

L. |kj(z)| < 2~¢ uniformly in |z| > 0.
2. fR1<|z\<R2 kj(z)dr =0 for all 0 < Ry < Ry < 0o because it is odd in z;.

3. By the fundamental theorem of calculus,

1
/ |kj(1:+y)—kj(x)d:1:§/ |y|/ Vkj(a + 0y)| 6 da
|| >2|y| || >2[y] 0

For |z| > 2y[ and 0 € (0,1), |2|/2 < || = [y| < |z +0y| <[] + [y| < 3|x]/2.

1
ke
wj>2ly |4t

1
§|y\'m§1-

More generally, we have proved the following.

Lemma 15.1. If VK (z)| < |z|~ Y uniformly for |x| > 0, then K satisfies the reqularity
condition.
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15.2 L?-boundedness of convolution with Calderén-Zygmund convolu-
tion kernels

Here is a lemma we need.

Lemma 15.2. Let K : R\ {0} — C be a Calderdn-Zygmund convolution kernel. For
>0, let Ko = Kl{.<|z<1/c}- Then K¢ 1s a Calderon-Zygmund convolution kernel.

Proof. |ke(z)| < k()| < |2/~ uniformly for |z| > 0. For the second condition,
/ Ks(x)d:c:/ K(z)dr =0, V0 < R; < Ry < o0.
Ri1<|z|<R2 max{R1,e}<|z|<min{R2,1/c}
For the third condition,
/ 2] |Ke(z +y) — Ke(y)|do < /5<m|<1/5 |Ke(z +y) — Ke(y)| d
z|>2|y €

<lz+y|<1/e
|z[>2|y]

+/ ccbiere |Ke(@)]da
13

>|z+y| or |zty|>1/e
|[>2]y]

+ %>|x| or z>1/e ’Ka(l‘ + y)| dx.
e<lz+y|<l/e
|z[>2y|

Look at I: If |z +y| < e, then |z| < |z+y|+|y| < |z +y|+|x|/2, so |z| < 2z +y| < 2e.
The contribution is at most

[ K@l [ ltass
e<|z|<2e e<|z|<2e
uniformly in € > 0.

If [z 4 y| > 1/e, then |z| > [z +y| — |y| > |z +y| — |2]/2, so x| > 5|z +y| > 5. The
contribution is at most

[, E®ldst,
w<|zl<2
uniformly in € > 0. Similarly, IT < 1 uniformly in € > 0 and y € R%. O

Theorem 15.2. Ket K : R?\ {0} — C be a Calderdn-Zygmund convolution kernel. For
e>0, let K. = Kﬂ{a<|x|§l/a}- THen

1K+ fll2 S 1F 2

uniformly for e > 0, f € L?. Consequently, f — K  f (which is the L* limit as ¢ — 0 of
K. * f) extends continuously from S(RY) to a bounded map on L*(R?).
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Proof.
1K * fll2 = | K * fll2
- HI?E.]?HQ
< || Kel|oo|lwhf 2
< 1K llsoll f1]2-
Fix ¢ € R%. Then

R.(6) = / T () du

:/ e TSR () da +/ e TS K () d.
|lz[<1/]¢] |z[>1/]¢]

Now observe that by condition 2 of the definition of the Calderén-Zygmund convolution
kernel,

e LK () dx| = / (e7 2™t _ 1)K, (z)dx
<l=[<1/1¢] |z[<1/¢]

By condition 1,

< / 2l€]|2] 4 da
lz|<1/|€]

1
S g

<1

On the other hand, we have

/ —27rzx§K iL' / *1—6 )—2pzzx£K()d
o> 1/l¢] 2| >1/l¢] >
= / 76_2”“’5}(5(36) dx
o[> 1/l¢| 2
_ 1 / e~ 2mit(z—¢/ QP (1) d
> 1/]¢|
= / 1e_27”'“"*€K5(ac) dx
o[> 1/¢| 2

1/ —2miz-€ < |.1Il‘ )
- = e K (z+-— ) dx,
2 ‘x—i— > ) 2‘§|2

2¢? ’ I€]
which puts us into a position to make a change of variables and use condition 3. We will
finish the proof next time. O
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16 Boundedness of Calderéon-Zygmund Convolution Kernels
16.1 L2-boundedness of convolution with Calderén-Zygmund kernels
Last time, we were proving the following theorem.

Theorem 16.1. Let K : R4\ {0} — C be a Calderdn-Zygmund convolution kernel. For
e>0, let K, = Kﬂ{s<|a¢|§1/a}- Then

1K+ fll2 S 1F1l2

uniformly for e > 0, f € L?. Consequently, f +— K x f (which is the L? limit as ¢ — 0 of
K. * f) extends continuously from S(R?) to a bounded map on L?(R%).

Proof. By Plancherel, R
1K fllrz < [[Kellooll fll 2,

< 1 uniformly in € > 0. Fix £ € R%. Then

~

so it suffices to show that || K. ||o

RO = [ en o) do

e
i<t/lel - Jal>1/1¢

Because of property (b) and (a),

/ ef2m'x-£K€(x) dr = / ’[6*271'1':1:'5 _ 1][(6(3;)
e<|z|<1/]¢| 2] <1/[€]]
1
s/ 2] €] ——dz S 1.
lel<1/l¢] |z]

We also have

. 1 . .
/ e—2mw~£K€(gj) dr = / 5(6—27%-5 _ e—2m§~(z—§/(2|€\2)))Kg(x) dr
[z]>1/1¢]| lz]>1/¢]|
1 .
= / e MK (1) da
2 Jia)>1/le)

1

| &Ko+ ¢/ (2]¢[)) d
z+£/(2(52)>1/l¢

_1 T 2V
3 T )~ Kl €/ U
w3 [ TSR /2l da
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We can split fx+§/(2|£‘2)>1/|§| = f|x|>1/‘£| — J4— [, where A and B are a partition of the
symmetric difference (like a Venn diagram). So A = {z : |z| < 1/|¢] < |z +£/(2/€]?)|} and
B={z:|z+&/2E7) < 1/¢] < Jal}-

_ / e K _(2) — Ko(x + £/(20¢[2))] da
lz|>1/|€]

I

N % /A e 2SR (1 4 £/(21¢])) da

11

1 .
— 5 | R g/l da

117

Looking at these terms individually:

<5 [  Kde) - Koo+ /@RI dz S
lz[>1/[€]

uniformly in £ and € > 0 by condition (c).

11 < /A K.(x + €/(21¢2))| da
Note that A C 2 : 1/[€] < |z + €1/ IEP)] < o] + 1/(2i]) < 3/(2lé]).

<

~

/ K. (y)] dy
1/1€1<]y|<3/(2/&l)

<

~

/1/I£ISIyS3/(2§I) '

111 < / Kz + €/(21€P))]| da
B
Note that B C z : 1/(2[€]) < |2] — 1/(2lil) < |z + €]/(21€[2)] < 1/]¢].

N / |Ke(y)|dy S 1.
1/(2lel)<lyl<1/l¢]

< 1, uniformly in € > 0.

~

So || Kz o
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We claim that for f € S(R), {K. * f} is Cauchy ni L?. Assuming the claim, for
f € SRY), let K * f be the L? limit of K, * f. Then

15 fll2 < [[Ke# fllz + |1 K * f = Ke + fll2-
N——

S ll2 =204,

So we have that
K * fll2 S [1fll2 +o(1)

ase — 0. Let ¢ — 0 to get ||K * f|l2 < ||f]l2- For f € L?, let f,, € S be such that f, LN f.
Then {f,,}n is Cauchy in L2, so {K * f,}n>1 is Cauchy in L2. Let K * f be the L%limit of
K * f,. Now

[ fllo = T | K+ fllo S Tim | frll2 = [ fl2-

Now let’s prove the claim: Fix f € S(R?) and 0 < &1 < e3 < 1. Then

(Ko f = Koy D) = [ K@)~ y)dy - | K()f(x - ) dy
e1<ly|<1/e1 e2<]y[<1/e2

=/ K(y)f(:c—y)dy+/ K(y)f(x —y)dy
e1<ly|<ez 1/e2<|y|<1/e1

Using property (b),

[ Kwfe-va|=|[ KW@ - )
e1<|y|<e2 e1<y|<e2

1
< / K (y)]ly] / IV f (e — Oy)| b dy
e1<]y|<e2 0

Using property (a),

< / [ / V(e —6y)| dody
e1<|y|<ea ———

S1/{e—0y)$1/(2)?

1
S(e2—e1)—3-
X

Alternatively, we could say

[l [ivie el s [t (195 o)z dody
e1<|y|<e2 2 e1<ly|<e2

LZL‘
S IV Iilze(e2 —21)
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£2,61—0

0.

For the other term, using Young’s inequality, we have

‘ / /K(y)f(x Y dy|| S IE L e,<pyi<iyenllz - 1l
1/e2<|y|<1/e1

1/2
<1l ( / \y|2ddy>
ly|>1/e2

d/2
S |Iflhes

220, O

LE

Remark 16.1. The same argument show that for f € S(R?), {K_ * f}.>¢ is Cauchy in LP
for 1 < p < co. It uses conditions (a), (b).

16.2 L? bounds for Calderén-Zygmund convolution kernels

Theorem 16.2. Let K : R?\ {0} — C be a Calderon-Zygmund convolution kernel. For
e>0, let K. = Kﬂ{s§|z|§1/s}- Then

1. [{z : |Ko* f(z) > A} S 311l wniformly in A >0, f € L',e > 0.
2. For any 1 <p < oo, ||K:x* fllp S ||fllp uniformly for f € LP,e > 0.

Consequently, f — K * f (the LP-limit of K. * f) extends continuous ly from S(RY) to a
bounded map on LP when 1 < p < oo.

Proof. First, assume that we have proven the first claim. By the Marcinkiewicz inter-
polation theorem, we get the second claim for 1 < p < 2. Now fix 2 < p < o0. By
duality,

|Ke* fllp= sup (K:x*f,g)

lgll,y=1
= sup (f,KFxg)
lgll,y =1
Sl sup [|KZ * glly
lgll,r=1
S llp- O

We will prove the first claim last time.
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17 L? Bounds for Calderéon-Zygmund Convolution Kernels

17.1 Weak L” bound for Calderén-Zygmund convolution kernels

Theorem 17.1. Let K : RY\ {0} — C be a Calderén-Zygmund convolution kernel. For
>0, let K. = Kﬂ{a§|m|§1/a} Then

1. [{z : |K. * f](z) > A} S 311l uniformly in X >0, f € L*,e > 0.
2. Forany 1< p < o0, K. fllp S | fllp wniformly for f € 17, >0

Consequently, f — K * f (the LP-limit of K. * f) extends continuoussly from S(RY) to a
bounded map on LP when 1 < p < oo.

Proof. Assuming that (1) holds, we proved (2) using interpolation and duality. To show the
last claim, it suffices to prove that { K. * f}.~o forms a Cauchy sequence in LP (1 < p < o0)
whenever f € S(R?). We want to prove this using the L? result and condition (c) of the
Calderén-Zygmund kernel; this will let our theory have more adaptability.
Forl<p<2/letl<gq<np. Write%zg—kl%e for some 6 € (0,1). Then

| Ky f— Ky * pr SIKe * f+ Kszf”%_e [ Ky f + ngfHZ

I E i SUHKey #fllaH Kep = flla) SN FIIG

£1,62—0

0.
For2<p<oo]1etp<r<ooandwrite%:%+g. Then
1Koy f = Koy 5 fllp < | Key % f = Koy = 70 | Koy % f = Koy = £

16220 <IN

Let’s show (1). For A > 0, f € L', and ¢ > 0, perform a Calderén-Zygmund de-
composition for f at level \: f = g+ b with suppb = JQp, @, pairwise disjoint, and
Y6 Q| < fll1/A. We can take

sy |1 s U
|Q71,€\ ka fly)dy =€ Q.
Then |g| < A, and b(z) = f(z) — ‘Q—lﬂ ka f(y) dy for x € Q, so
1
T MO

Then
o [Ke* fl(z) > A} < {o: [Ke* gl(x) > A2} + {2« [ K+ b|(z) > A/2}
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1
S allEe gl +

ek

+ ‘{x € [Uan]c K. # b|(z) > A/2}

k
We have Wl _ Malh _ 171
1 2 glla Mgl 1
and

Ua@u| <X laul <oy joxl < ad”fA”l.
We are left with E := |{z € [|[JaQ]" : K. *b|(x) > A/2}|. Let 2 ¢ JaQy. Then

K+ b(x /Kﬂc— y)dy

=> | K.(z—yby)dy
PERAY)

Here, we only have a convolution, not an average. But a convolution is only as smooth as
its smoothest term. So we have to use the regularity of K. (condition (c)).

X /Q [Kela =) = Kela = a0)b(s) dy

Using Chebyshev,

R PLAUIE
ZUaQk

NAZ/ an)c/riK:c— — Ke(a =) |Ib(y)| dy da

Change variables.

1
AZ/ (/ rKe(:c+xk—y>—Ks<w>rdx> dy
7 Qk (aQp)*—{zr}

For y € Q, |7k — y| < $4(Qr)Vd. So we need al(Qy)/2 > 230(Q))Vd. So take a > 2V/d.

Then using the regularity condition (c) of the convolution kernel, we get

)\Z/ -1dy

/11
< : O
~Y A

Remark 17.1. Once we have boundedness in L?, the only condition we need to deduce
boundedness in LP for 1 < p < oo is the regularity condition (c).
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17.2 Application: The Hilbert transform

Here is an application.

Example 17.1. Let K : R\ {0} — R be K(z) = . This is a Calderén-Zygmund

convolution kernel. So the Hilbert transform,

Hf(z) = jr/f(xy_ v) dy = lim 7]0(37 ~Y) dy.,

e—0 ly|>e Yy

is bounded on LP? for 1 < p < oc.

Remark 17.2. Boundedness on L' and L may fail. Consider the Hilbert transofrm, and
take f =T, € L' N L>; we will show that Hf ¢ L' U L*®. For ¢ > 0,

mf)=t [ e,
T Je<ly|<1/e Y

1 / 1
7 ) e<lyl<i/e y

z—b<y<zr—a
1 r—a
= —log
T r—0b

almost everywhere. But Hf ¢ L' U L.

Remark 17.3. We have ﬁ\f(f) = —isgn(§) - f(£). For a > 0, let

S et >0 O E>0
7i© —{ 3(6) = {qu o

0 &£ <0,
Then
e £>0 - 1 £€>0
~ ~ S’(R), a—0
(fa = 9a)(§) =40 £=0 0 &=0=sgn(¢).
—e% £<0 -1 £€<0
So we get
S'(R), a—0 v

fa_ga—>sgn N

Next time, we will complete this computation.
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18 The Mikhlin Multiplier Theorem

18.1 The Hilbert transform

Recall the Hilbert transform
Hf(z) = PV/f(x_y)dy.
Y

~

We claimed that ﬁ\f(f) = —isgn(&)f(&). Let

N —ag
fa(§)={€ >0 :oia(f):{o >0

0 ¢<0, et £<0
Then
e £>0 - 1 £€>0
~ S'(R), a—0
(fa—3a)(§) =10 §=0 0 £ =0 =sgn().
—e% £<0 -1 £€<0
So we get

Now compute

1
a — 2miz’

fulw) = /000 ePTirteTe dg =

0
; 1
_ 2mix€ a{d —
9a() /_OO eretdl a+ 2miz’

SO )
dmiz

fa(z) = ga(z) = PERyRCIGE
Let ¢ € S(R?), and compute

. . dmix
lim(fa — ga)(p) = lim m@(l‘) dx

We can’t pull in the limit as is. We need the integrand to vanish near 0.

4mix

= tim [ () — pl0) e () d
tim [ () — p(0)] + 1 e (@) d

= 11m = X)) — 11m —— = i X
a—0 J_. a® + 4m2x? 7 ? a0 e a% + An2z2”
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= [ @ -eon+ [ e

On the other hand,

Sellelle =5%0.

' | et - el0pas

_e TX

So
"(R),a 1
fo— g0 TE PV (x> (o) =i,
s

where iH = sgn.

18.2 Littlewood-Paley projections and the Mikhlin multiplier theorem
Let’s construct a dyadic partition of unity. Let ¢ : R — [0,1], ¢ € C° with

() 1 Jz| <14
xr) =
4 0 |z| > 1.42.

Let ¢(x) = ¢(x) — ¢(2x); if we graph ¢, it is 0 before 0.7, increases quickly to 1 between
0.7 and 0.71, plateaus on 0.71 to 1.4, and goes down to 0 by 1.42.
For N € 2%, let 9n9z) = 9(2/N). Note that

> n(z) =1

Ne2?
a.e. (in fact for all = # 0.

Definition 18.1. The Littlewood-Paley projection to frequencies |{| ~ N is given by

— ~

Py f(€) = F©un(€),  ie Pyf=fx[N%Y(N-).
We also define
Pon1(6) = F(©)p(e/n), i Payf=[N%"(N )]« f
Remark 18.1. Caution: Py is not a true projection since P% = P.

We can also define

P =I1d-P<cy, Py<<v= Y Pk
M<K<N
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Theorem 18.1 (Mikhlin multiplier theorem). Letm : R?\{0} — C be such that |IDgm(§)] <
€711 uniformly for |€] # 0 and 0 < |a| < [%EL]. Then

~

frr @ f(©) =m" « f
is bounded on LP for all 1 < p < oc.

Proof. Taking o = 0, we get M € L*°. By Plancherel,

I * fll2 = [lmfll2 < mllze ]2 < 1f]2-

It suffices to check the regularity condition (c) is satisfied by the kernel m". We'll first
prove this assuming |Dgm(§)| < |€]71o1 for 0 < |a| < d+2. In this case, we will show that
\VmY (z)| < |=|~ @) uniformly for |z| # 0. This yields (c).
We have
[z |V (@)l < HD?[EW(S)]HL%,

N—_———
o(lg[ 1=

But this is not integrable! However, we can integrate it on dyadic annuli. Write

mE) =Y mn(),  mn(&) =m(&Pn(S).

Ne2Z

Then the chain rule gives

Delemn(@)] = > DEmOIDE[gn(E)],

al1toas=«a
SO
IDEEmN ] Sa Y [E[MTIMINTIl D2y (g/N).
a1 tas=a
Then
2% Vmy (@)llee S 1D Emn () 1y
S X[ jgrelyelag
a1+ag=a” [EI~N
<, N1—|a\+d‘
So we get

[V ()] S min{ N, (V]2 %)~ 1)
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By the triangle inequality,

[Vm(2)] < Y [Vmy ()

Ne2Z
S D> N Y
N<|x\ L N N]a:|d+2
< |$| d+1

uniform in |z| # 0.
Now let’s prove condition (c) assuming this hypothesis holds for only 0 < |a| < [41].
Look at

/x|>2|y im¥(z +y) —m"(z)| de =) /|x|>2y| Im(z +y) — m ()| da

Ne2Z

If we have fx(€) = F(€)¥&), then fy(z) = (f * NY(N = [ f(z — y) N (Ny) dy,
so |fn(@)| S [ 1f (@ = y)| N i dy.

< Z/ m (z + ) — m(x)] de
N<|y|~! |z[>2]y]

+2 Z/ MY ()] do
NS etz

Using the fundamental theorem of calculus,

1
< ¥ / 1yl / V(e + 0y)| O de
N§|y|*1 |x|22|y| 0

+2 Z/ imy (z)] d.
N>|y|-1 || >yl

We will complete the proof next time. O
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19 The Mikhlin Multiplier Theorem and Properties of Littlewood-
Paley Projections

19.1 The Mikhlin multiplier theorem

Theorem 19.1 (Mikhlin multiplier theorem). Letm : RA\{0} — C be such that \Dg‘m(ﬁ)] <
€171 uniformly for |€] # 0 and 0 < |a| < [451]. Then

~

frr m( O =m" x f
s bounded on LP for all 1 < p < oco.

Proof. By Plancherel and m € L™, we get boundedness on L?. So it suffices to check
regularity condition (c):

[ ey - m@)de s
[z[>2]y]
uniformly in y. We have

/M| ¥ (a+y) —m (@) dr S Y

[ i) i) do
Ne2Z |z[>2[y]

where My = miyy = ma(- /N).

< Z/ m (z — y) — mY(2)| da
N<|y|! |z|>2y

+2 Z / |my (z)| dz
N>|y|-1 [z|>[y]

1
<y ol [ 19micta+ 60)] db s
0

N<|y|—1 |z|>2]y|

+2 Z/ Im¥ (z)| da.
N>|y|-1 |z|> |yl

Last time, we had pointwise bound on derivatives by assuming more conditions for more
values of a. Here, instead, we will use Plancherel. By Plancherel,

|@miz)m(@)lz2 = | Dgml2

1

= > Carn [ D¢ m(E) - Sy (D (€/N) 2

al1toas=«a
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1/2
o D ( / |§!2'Q1N2'“2'd§>

altag

< N9/2-lef
for all 0 < a < [4H]. By Cauchy-Schwarz,

/| I @] de < A 5 (AW

Similarly,

1/2
/ Imy(2)] dz < |lz¥my 2 (/ jar| 21 dw)
|z|>A |z|>A

< N¥2-led gd/2=le
provided || > d/2. So for a = [%1 > d/2, we get
/ im ()] de < (N A2 1d+D/2],
|z|>A

Then

/ @) dr S 3 (N2
|z|>|y|

|z|> |y =1 N>[y|~1

This is a geometric series, so it is smaller than a constant times its largest term.

S

)

uniformly in y € R?. Taking A = N~! in our relations, we get

[k s

uniformly in N.
The same arguments would give

[ 1vmista)ldz < .
uniformly in N. Indeed,

| (27iz)*Vmyllz = [ DY(Emn)||2
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1/2
< [ gy d§>
2 ( eloN

al1toas=«

g N1+d/2—|a\,

so we get
/| VIRl S NHIZAYE = (N A)2,

[ 19myl S N@ray T,
|z[>A

We can now estimate

1
3 |y|/ /mewyﬂdadm S ol-NST,
|z|>2]y| JO

N<ly| =t N<ly|=!
uniformly in y.

19.2 Properties of Littlewood-Paley projections

Recall the Littlewood-Paley projections:

1 oja<14 o) — (2
90(96)—{0 o, V@ =l e,

Then we had
fn=Pnf=fxNW (N,

f<n =Ponf =[x N%"(N ).

Here are the basic properties of Littlewood-Paley projections.
Theorem 19.2.
1| fallp + [1f<nllp S I fllp uniformly in N and for 1 <p < occ.
2. |fn(@) + | fen ()| S Mf(x).
3. For f € LP with 1 < p < 0o, we have f =z > neor [N
4. (Bernstein’s inequality) For 1 < p < q < oo,
1£xllg S NP=49) £l

[ fenllg S NYP=49) fo |l
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5. (Bernstein) For 1 <p < oo and s € R,
VI fnlly ~ N[ favlp-
In particular, for s >0 and 1 < p < o0,
VI fenllp S Nl f<nllp-

VI fonlly S N2 fsnllp
Proof.

1. By Young’s inequality,

fnllp = 1 * NUY (N )|,
S Ufllp IN%Y (N 1 = 1Yl
N———

S 1 fllps
| f<nllp = “f*Nd@v(N'>”p

S 1 lplley Il
S 1 llp-

(@) < / |f<y>Nde<N<x —y))ldy

< Nd/ f W) ——55 dy
)
§Nd/ Idy+ZNd/ ’J;gd)’dy
|:c—y|s1/N near  JR/INS|o—y|<2R/N

How do we make this look like the maximal function?

1
< - d
~ B, 1/N|/MN Sy

=+ R4 — y)| dy
}%Z B(z, 2R/N)! B(:L«m/zv)| W)l

< Mf(x [1+ZR

Re2Z

S Mf(z).
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3. First assume f € S(RY). By Plancherel and dominated convergence,

N0
If — Py<<inflla — 0.

For1<p<2,write%:9+1?—9:1T+9‘

If = Py<.<infllp < IIf — PNSSl/NfH?Hf - PNS-Sl/NfHé_Q
< (IIfllr + HPNS-gl/Nle)G lf = PNg-g/NfH%_e

N—0 0
by property (1). For 2 < p < oo,

2 _
I1f = Pyvecinflls < 157711 11527
———

NS0, Sh e

If f € LP, let g € S(R?) such that || f — g||, < 6. Then

If = Pn<<infllp S g — Pyv<<ingllp + I = glllp + 1 Py<.<1/n(f — 9)llp
So(l)+46

as N — 0. O
We will prove (4) and (5) next time.

Remark 19.1. (3) fails for p =1 and p = co. For p =1, [Pyf = ﬁn\f(O) = 0, so pick
some function with mean 0.
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20 Littlewood-Paley Projections and Khinchine’s Inequality

20.1 Bernstein properties of Littlewood-Paley projections
Last time, we were proving properties of Littlewood-Paley projections.
Theorem 20.1.
Ll fallp + 1 f<nllp S [Ifllp uniformly in N and for 1 < p < oco.
2. |fn(@)| + [fen ()| S Mf(x).
. LP
8. For f € LP with 1 < p < 0o, we have f = Y ncoz [N.
4. (Bernstein’s inequality) For 1 < p < q < oo,
1£nllg S NP9 £l
I f<nllg S NYP=44|| fen -
5. (Bernstein) For 1 <p < oo and s € R,
VI fNllp ~ N[ fllp-
In particular, for s >0 and 1 < p < oo,
VI f<nllp S N2 f<nllp-
If>nllp S NIV fonllp.
We proved properties (1) to (3) last time.
Proof. Here is 4: We have fy = f * N%)V(N -), so by Young’s inequality,

1Fnlla S 15l - 1N N g
S et tfamt/p

SNYPA £,

To recover fy on the RHS, we use a common trick. Let J(f) = P(28) + (&) + ¥(£/2),
YN (&) = ¥(&/N), and define the fattened Llttlewood-Paley projection

—

Py (&) = F(&) - dn(6).
Note that ﬁNPn = P, since J =1 on supp. Write

I = Pxf = fox [N%Y(N )]
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and argue as before. The same argument gives || f<ylly < N¥P=49| fon|,. (We use
PeanPen = P<n.)
Here is 5: Note that

VI* v = (2D (€] * £
N [(*;V'g')swgm»]v “f
Let

X(€) = (@mle)*p(€) € CRRIN{0}),  xn(§) = x(&§/N).
Then |V|*fx = N*[NIV(N )] * f. So

IV fwllp S NNl [IN v (N )]
N———
=[xVl
S N[l

Using the fattened Littlewood-Paley projection Py, we get

VN S N[ fallp-

On the other hand,
1 fally = VI IVEfally S NIV

Finally, for s > 0,

IV fenlly S 32 NIV fally

M<N

< Z M* || farllp
MEN <1T 1

S Nl

For high frequencies,

Isnlle S >0 Ifallp

M>N

S MV el

M>N SIIV1 £l
SNTENVIEfllp- O
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20.2 Khinchine’s inequality

Lemma 20.1 (Khinchine’s inequality). Let { X, }n>1 be independent, identically distributed
random variables with X,, = £1 with equal probability. Let {c,}n>1 C C and 0 < p < oo.

Then
pq1l/p

E chXn ~p /Z|Cn|2.
n>1 n>1

One way to think about this is that a random variable’s “size” is given by its variance.
For p =2,
2

E || enal | =EI(Y k) (Yem¥n)]
n>1
= S ePEXE + 3 extn BT
n#m
= Jenl’.

So this basically says that this orthogonality persists, even in an L? sense.

Proof. Without loss of generality, we may assume ¢, € R.
p

E || enXn :p/oo)\pIP’OchXn
0

n>1

)8

By Chebyshev,

P (Z en X, > )\) < e MRt T enXn]

H 6tchn]

n

_ e—)\t H E[than]

n

— N H efen 4 e ten
2
n

— e—)\t E

=e M H cosh(tey,)
n

Use that coshx < /2,

= e_At H €t2ch/2
n
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— e M /2( )
Choose t such that A\t =23 c2;s0t = A/ 2. We get
P (Z cn Xy > )\) < e~ N2 eR),

The same argument gives

P (Z enXp < _)\) < ef)\t E[efthan] < e*)\Q/(QZC%)'

So we have
p

E || enXn :p/oo)\pIP’OchXn
0

n>1

)8

< dx
< / we /T B
0

Make the change of variables § = \//>_ 2.

For the other inequality, for 1 < p < oo,

Slenl = [T eni
<E HZCan

|

p} 1/17IE UZ 0 X,

which gives us
p] 1/p

V@ <E Hzcnxn

For 0 < p < 1, we use Cauchy-Schwarz instead:
2
Z lenl? =E UZ cnXn ]
/2
_E UZ nXn| ‘chxn
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4—p:| 1/2

<E HZ cnXn

p] i E UZ cnXn

~~

S(Tleal?) /212

So we get that
p:| 1/2

(St 52 [ S,

Now raise both sides to the power 2/p. O]

20.3 Littlewood-Paley square function estimate

Theorem 20.2 (Littlewood-Paley square function estimate). Let f € S(R?) and define

the square function
S(F) =D 1wl

ISHllp ~p £l V1 <p<oo.

Proof. Let’s prove ||Sf|lp Sp || fllp- Let {Xn},c0z be iid random variables with X,, = +1
with equal probability. Let

Then

mx(§) = > Xnpn(&).

Neg2Z
Note that
my * f = Z Xnfn.

Ne2Z

We claim that my is a Mikhlin multiplier uniformly in the choice of X .

IDgmx ()] S Y NDgy|(¢/N)

Neg2Z

Since 1 has compact support on R\ {0}, only finitely many N contribute to the sum.
S 1€ O
We will finish the proof next time.

Remark 20.1. We could replace ¢ by any C2°(R?\ {0}) and still get a Mikhlin multiplier.
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21 Estimates on the Littlewood-Paley Square Function and
the Fractional Product Rule

21.1 Estimates on the Littlewood-Paley square function

Theorem 21.1 (Littlewood-Paley square function estimate). Let f € S(R?) and define

the square function
S(H) = /S il

ISy ~p [1£llp - V1 <p < oo

Proof. Let {Xn}ncoz be iid random variables with X,, = 1 with equal probability, and
define the random variable mx(§) = Y X,¥n(§). Last time, we showed that mx is a
Mikhlin multiplier, uniformly in the choice of Xx. This holds even if we replace 1 be
another C2°(R?\ {0}) function. Now

Then

my * f = Z XnfN-

Ne2Z

By Kinchine’s inequality,

EllmY * fP]VP ~ /D fnI? ~p S()-

Now
IS~ [ Ellm « 7P (@) do
~E [/]m}/(*ﬂp(x)dx]

~~

llm =l

S EllA15)
S 1B
Again, note that this holds for any C°(R?\ {0}) function in place of .

To prove the reverse inequality, we argue by duality and use the generality under which
we proved the first inequality. We say

[fllp = sup (f,g)

gl =1

= sup <Z Pyf, g>

gl =1
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Since ]BNPN = Py and ]5n is self-adjoint,
= sup Y (Pyf,Png)

lolly=1 S
< S“up /\/Z‘PNf|2\/Z|PN9’2dw
gl =1

Using Holder,

< |S(f \p” e /Z\PNQP
qll./

Replacing ¢ by {/Jv(f) Y(28) + (&) +(£/2) € C2(R?\ {0}) in the previous argument,

we get
‘/ \PNgP S gl < 1 M

Corollary 21.1. Fiz 1 < p < co. Then

1. Whenever s > —d and f € S(R) (or s € R and f € C(R?\ {0})),

D N fxf?

VI fllp ~p

2. For s >0 and f € S(RY),

VI Fllp ~p

> N fonf?
p

Proof.

1. Let’s show that H\/ZNQS\fNPH < IV f]l,. We have
p

D ONE| NP =D NPV TV i
= >INV Py (V)P

Replacing by X(€) = gz 9(€) € C2* (RN {0} and oy by x(€) = (22 ) ¥w(©),

we get
[N pa (P

S IIVIE £l
p
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To prove the reverse inequality, we argue by duality:

IVIfllp = sup (IVI*f,9)

llgllr=1

= sup Z<|V|SfN,lgNg>
||ng/:1 N

— sup Z<NSfN,N—SW|SﬁNg>
||ng/:1 N

Recall that F = {h € S(RY) : T vanishes in a nbhd of 0} is dense in L?". So we can
always take g to be in this family. So

1957l < s [ /3 NS N2 9] gl d
g

gl =1

VO N

VS N2 V] Pygl?

sup

S ‘
pllglly=1

D
Replacing v by

XO = AT, = (F) Inee),

we get

[ NIV Pl

2. We claim that > N%|fsn|? ~ Y N2%| fy|?. We have

S llglly < 1-
pl

SONE|nP=> N Y > fv
N N

N1>N Nao>N

By paying a factor of 2, we can assume N; < Na.

<2 > N®|fwl-|fnl

N<N1<N2

S D NP

N1<N>

S Y (5) 011D 015)

N1<N2
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By Cauchy-Schwarz,
S ON il
N

On the other hand,

lIn] = |fon — foon| < [ fonf>an]-

So
ZNQSU-N’Q S ZNQS‘fznP + 2725 Z(QN)25|f22N’2
N N N
S ONE| oy 0
N

21.2 The fractional product rule

Theorem 21.2 (Fractional product rule, Christ-Weinstein, 1991). Fiz s > 0 and 1 <
P,P1,P2,q1, G2 < 00,. Then

VI S MVE Fllpllglos + 1l + VI gllg,-

1, 1
whenever L 5= —|— p + B

Remark 21.1. ps and ¢; are allowed to be co.

We really should only be proving this for 0 < s < 1, since for integers, we can just use
the regular product rule and then look at the fractional part.

Proof. We have

IV 9l ~ %ZN%\PN (fo)P?

p

We write fg = fon/a9 + f>N/a9>N/a + f<n/a9<Nyas SO
Pn(fg) = Pn(f>n7a9) + PN (fsnjag>nya) + P (f N/4)-

IPN(f9)l S M(f>nya9) + M(f<n/ag>n/a)
M(f>n/a9) + M((Mf)g>nya)-

0

This gives
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So we get

SONEP(F9)2 S D IMIN fona)g) 2+ S 1M F) - Nogs ) .

which gives

VS NEPY () S /S0 M Fony)a) 24+ S Nogana)P.

So we get

IV E ol < H\/N2s|sz/4|zg

By the corollary,

+ HMf\/N28|gZN/4|2
P

p

S IVEFlpllgllpe + 1 a1V llgo-
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22 The Fractional Chain Rule

22.1 Proof of the fractional chain rule

Theorem 22.1 (Fractional chain rule, Christ-Weinstein, 1991). Let F' : C — C be such
that

[F(u) = F(0)| < fu—v|[G(u) + G(v)],

where G : (C — [0,00). Then for 0 < s < 1, 1 < p,p1 < 00, 1 < pa < oo such that

1
5 pT + p2 S < S
IVIEE o uw)llp SNV IFullps - 1G o ullp,-
Example 22.1. Consider some nonlinear interaction: Let F(u) = |u|Pu, where p > 0.
Then

[F(u) = F(u)| < Ju—o|[[ul” + [o]],
so we get a bound.

Proof. Last time, we showed that

IV 0wl ~ S N1 (F o

p

Let’s calculate
Py (f o w)(z) = / NV (Nu)(F o u)(z — y) dy

We want to isolate u in this expression. We will use the locally Lipschitz condition. Since

[0 dy = (0) = 0,
— [ N NF o Wi~ ) ~ (Fow)(@)] dy
So we have
Pu(F ow)|(@) < [ N (V9] ule — ) = u(@)] (G o u)(a — y) + (G o u)(a)] dy

We expect cancellation in the u terms at low frequencies. So we decompose

[u(@ = y) —u@)] < [uon(@ — y)|+ [uon(@)| + > (e —y) —up(@)].
Y H k<N
171

Let’s consider the contribution of I:

/Ndlwv(Ny)luw(w — (G ou)(z—y) + (Gou)(x)]dy
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We can bound this using the maximal function. We have [ N%|yV(Ny)|lg(z — y)|dy <

f|y|§1/N \g(:ﬂ—y)| dy+ZRezN fR/N§|y|S2R/N Ndﬁlg(:v—y)l dy S “3(0,11/1\7)\ fB(0,1/N) |g(a7—
y)ldy+ -

S M(u>n(Gow))(x) + M(usn)(2)(G o u)(z)
S M(usn(Gow))(z) + M(usn)(z)M(G ou)(x).

This contributes the following to the original estimate:
HV S NIM (o (Gow)]| + \W S N2 M (s 5) M(G o)
< ’\/Z|M Nousn)(G o u)[? HM (Goup/S IM(Nousy) 2

Using our bounds for the vector-valued maximal function and Holder,

< /Z|NSU>N| (Gou) H Z|N5U>N’2

S MV FPullpy - 1G o ullp,-

HM (Gou)l,

This is an acceptable contribution for what we want to prove.
Let’s look at what II. To Py(F o), this contributes

/NdWV(Ny)I%N(x)I[(G ou)(z —y)+ (Gou)(z) dy

S lusn (2)|[M(G o u)(x) + usn(2)|(G o u)(x)
S M(usn) (@) M(G o u) ().

As before, the contribution of II to the right hand side of the original estimate is acceptable.
We turn to III. We claim that

lur(z — y) — ue(@)| < Ely| - [M (uk)(z — y) + Mug(z)]
We split into cases:

1. kly| > 1: Then

u(z — ) — we(@)| < |Peug| (@ — y) + [P (@)
S (Mug)(z — y) + (Muyg) (x).

2. kly| < 1:
fui(z — ) — ugl(a)] = \ [ R0 Wt~y = 2) o — ) dz
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= | [ R ke = ) = P e - 2) s

Using the fundamental theorem of calculus,

1 ~
- / Kikly / VY (ke — Oky) Jup(e — =) dOd=
0
<1/ (kz—0ky)?4 <1/ (kz)?e
< klyl - (Mug)(@),

proving the claim.
To Py (f owu), the term III contributes

/Nd\wv Ny)| Y Klyll(Mug)(x — y) = M(ug)(@)] - [(G o u)(x - y) + (G ou)(x)] dy

K<N

<ZN / N 0@ — ) + (M) (@)] - (G o w)(@ — ) + (G o w) (@) dy

k<N N|y|

S N - [M((Muy) - (G ow))(x) + M(Muy)(z) - M(G ou)(z)].

k<N

The contribution of III to the right hand side of the original estimate is

2 2

< E:NQS }: M (Mug)(Gou))| || +| | N2 Z%M(Muk).M(Gou)
k<N k<N
p p

Both cases have terms like

Z N2s

2

kL
<2 Y N23ﬁ|ck\|cﬂ

>y

N k<N E<L<N

k
< LQSf
<) 7 lexllez]
k<L

k 1-—s
<S(Z) kel
S (7)) Pl
k<L

By Cauchy-Schwarz (or Schur’s test),

5\/Zkzs’ck|2\/ZL25|cL’2
k L
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S ZNQSICN‘Q-
N

And we use our maximal function bounds to finish the proof.
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23 Introduction to Oscillatory Integrals

23.1 Decay of integrals with compactly supported integrand
Oscillatory integrals are of two types

1. First kind:
I0) = [ 0(0)

where A > 0, ¢ : R — R, and ¢ : R — C. In this case, we are interested in
the asymptotic behavior of I(A) as A — oo (think of A\ as time). This is covered in
Chapter 8 of Stein’s Harmonic Analysis textbook.

2. Second kind:

(T2 f)() = / A K (1, ) £ (3) dy,

where A >0, ¢ : R4 xR? -5 R, K : R xR? — C, and f : R* — C. We are interested
in the asymptotic behavior of the norm of T as A — oo. This is covered in Chapter
9 of Stein’s Harmonic Analysis textbook.

In this class, we’ll discuss oscillatory integrals of the first kind, first for d = 1, where
we will develop a more complete theory.

Proposition 23.1. Let ¢ : R = R, ¢ : R — C be smooth functions. Assume suppp C
(a,b) (nonempty interval), and suppose ¢'(x) # 0 for all x € [a,b]. Then I(\) = fab M@ )(z) da
satisfies |[I(\)| Sn A~ for all N > 0.

Proof. We use integration by parts. Write

. 1 d .
Aole) _ e
¢ iAY () dx (e )

Integrating by parts,

= [ e (85 = [ ]

Let L
(DN@) = 35577 10
The transpose of D is
__d ([ f(=)
D10 = (5007

Note that ‘
DN(e ™) = YN >1.
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Now

b

b
o Nop(z) da

b 1 N
z)\qb
[ daiAg! (x )} '

I
\\

We get

¢(5)¢(1+a1) ... ¢(1+ak)
(¢/)N+k

<N AN O
L' (a,b)

N
N SAVY Y

k=0 f4+ai1+-+ar=N
;>

Remark 23.1. If ¢ is not compactly supported inside (a,b), then we don’t expect better

than A~! decay.
b iXb _ iXa
iz e —¢
do = —— "
/a ©w iX
23.2 The Van der Corput lemma

Proposition 23.2 (Van der Corput lemma). Let ¢ : R — R be smooth. Fiz k > 1, and
assume \(;3 )(x)| > 1 for all x € [a,b]. If k =1, assume also that ¢ is monotonic on [a,b].
Then I(\ fb M) dg satisfies |I(N)| < cxA~V*, where ¢, is independent of ¢, X, a,b.

Remark 23.2. If £ = 1, the assumption |¢'(x)| > 1 is not sufficient to get the claim. Set

A =1. Then ) .
/ @ dg| > / cos(p(z)) dx| .

If ¢ is large on {x : cos(¢(z)) < 0} and small on {x : cos(¢(x)) > 0}, then |{z : cos(p(x)) <

b—o0

0} < {z : cos(¢(z)) > 0}|. In particular, |[I(X)] — oo.

(TN =

Let’s prove the Van der Corput lemma.

Proof. We argue by induction on k. First, let k = 1. Then
b .
I\ = / M)
a

P d e
_/aw;s'() (777 da
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iAp(b iAp(a b
:e¢()_€¢()_/ez‘x¢(x>d LY
(D) iIN(a) ), dz \ i/ (z)

So
2
t =3 )\/ dx ¢/
Since ¢’ is monotonic,
_2+1/bd1 m‘
A A, dx ¢ (x)
2 1 1
“ATAI0
T
<3
A

So ¢ = 3.

For the inductive step, assume the claim holds for some k > 1. Assume ¢+ (z)] > 1
for all 2 € [a,b]. Replacing ¢ by —¢ if necessary, we may assume that ¢*+1)(z) > 1 for all
z € [a,b]. So ¢*) is increasing on [a,b]. Then there exists at most one point ¢ € [a, b] such
that ¢(*)(¢) = 0. We have two cases:

1. 3c € [a,b] such that ¢*)(c) = 0: Since ¢(¥) grows at least linearly, there is a § such
that |¢p*) (x)| > 6 for all z € [a,b] \ (¢ — &, ¢+ ). Then

k
%W‘”%) >1 W6 VRz e fa,b]\ (c— 6, ¢+ 6).
X

Then

=6 c+6 b
I\ = / (iA®) g 4 / £N@) g 4 / ) g
“ =6 c+6

Using the change of variables x = §~1/%y,

c—6 51/k(c—5
/ . / (=) Ny 517k g
a §

1/kgq
by the inductive hypothesis. Similarly,

A gy = < cp(oN)HF

@) dx| < e (AR

c+6
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For the remaining term, we have

ct+é
/ ez)«b(a:) dr
c—9

< 26.

We get
I(N)| < 2¢,(A8)~H* + 26.

Now choose § such that (A0)"/¥ =§ = § = A=Y/ (*+1) Then
IT(N)| < 2(ep + 1) AV D,
——

Ck+1

2. ¢ (z) # 0 for all z € [a,b]: If ¢F)(a) > 0,

at+d b )
/ GN@) g / M) gy
a a+d

as in the previous case. Setting § = \~1/(k+1)

I\ < + <8+ cp(AN)TH/E

, we get
[I(N)] < (e + DA™Y/,
Similarly, if ¢(*)(a) < 0, then ¢ (b) < 0. So we split

b—5 b
/ @) gy / GN(@) gy
a b—d

Corollary 23.1. Let ¢ : R — R and ¢ : R — C be smooth. Fiz k > 1, and assume
|0®) ()] > 1 for all x € [a,b]. If k =1, assume also that ¢’ is monotonic. Then

T < + < x(80) MK 45 < (ep +1)5 M),

O]

b
I\ = / M@y (1) d:
satisfies

[TV)] < epA™* [W(b)l + /ab W(l’)dfﬂ] :

I\ = / bw(a;) (;; / " gixo) dy) dz

Using integration by parts,

b b x
= 4 (b) / AW gy — / P () - < / eAoW) dy> da. O
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24 Estimating Oscillatory Integrals With Stationary Phase

24.1 Estimation in the 1 dimensional case

Proposition 24.1 (stationary phase). Assume ¢ : R — R is smooth and has a non-
degenerate critical points at xq; that is, ¢'(xg) =0 and ¢"(xg) # 0. Assume ¢ : R — C is
smooth and supported in a sufficiently small neighborhood of xo. Then

I0) = / M) (2) da
_ €M¢(IO)¢($0)‘ /27T€7L(7r/4) sgn(¢”(z0))|¢//(x0)|—1/2|—1/2)\—1/2 + O()\—3/2)
as A — 00.

Remark 24.1. If we are not interested in the coefficient of the leading order term, then
we can argue as follows: Let a € C2° be such that

a(z) = {1 7| <1

0 |z[>2

and decompose
I(A) = Ii(A) + I2(N),

L)) = / @y (a)a(ANV? (x — x0)) d.
Then
B < ol [ o2z = 20))| do
< Mllscllalloo - A2,

Iy(\) = /ei)‘d’(x)z/}(m)[l — a(\Y2(z = x))] da.
Note that supp(i(z)[1 — a(AY2(z — x0))]) € {\"Y2 < |z — x| Sy 1}. If suppp is such
that ¢'(x) # 0 for x € (supp ) \ {zo}, then integration by parts gives
L) Sm A" ¥m > 0.
Proof. Write

0 /!
8(x) = d(z0) + & (aar=70) + 20 — 20)* + O(f — of?).

Rewrite this as Y
¢" (o)

o) = d(wo) = — (= 20)*[1 + ()],
where n(z) = O(]z — z¢|). Let U be a small neighborhood of xy such that

98



1. Inp(z)| < 1lforallz € U

2. ¢'(x) #0forall z € U\ {xo}.

Assume supp ¢ C U. Change variables to y(z) = (z — x0)+/1 + n(x). This is a diffeomor-
phism from U to a neighborhood of y = 0. Then

I(2) = (@) / (NO@ =00l (1)
_ ¢iAe(w0) / N (@029 (0 dy,

where 1’/16 Ce* is supported in a neighborhood of y = 0 and (0) = (o).
Let QZ € C° be such that @Z =1 on supp QZ Let A = w Then

I(3) = eP9) / N oV ()0 y) dy

Using a Taylor expansion, we write

N N+1

2~ , 1t d 2
e P(y) =Y ajy’ +y ' Ry(y),  Rn(y) = N‘/o (1- t)NdyN—H [el "] (ty) dt.

=0

This leads us to consider 3 terms:

N ~
T= (Mo 3, / M eV dy,
=0

IT = ¢iA¢(@0) / e eV Py (1) [ (y) — 1] dy,

1T = ¢"?(e0) / e eV Y NHLR L9y () dy.

Since %einy, we can pull off a factor of y using integration by parts. By picking N to be

large enough, we can get as much decay in III as we want.
Let’s look at I. Note that the terms with j odd vanish. Consider j = 0 and note that
ag = ¥ (xg). The contribution is

e A90) (o) / €MV dy = M) (1 — i0) 2 /7.

To see what happens when A — oo, write 1—i\ = re', wherer = V1 + A2 and tano = —\.
Then (1 —i\)~Y/2 = r~1/2¢=9/2 Then

B 1 —1/2
rol/2 = <|>\| 1+ ~>
A2
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~ 1\ /4
= |\ 7V/2 <1+ ~>
)\2

" -1/2
9 1/2 »
=—— + O(\777),
() +007
- /"
tano = -\ = _)@2(360) SN —sgn(¢” (z0)) - 0o
So o — —sgn(¢”(x0)) - 5, and we get
¢MT0) ) () 1 [ —— 2T sEn(@” @o)T/4 | (A=5/2),
Al¢" (o)

For j > 2 even,

‘/eixy2ey2yj dy‘ _ ‘(1 _ iX)l/Qj/Q/eZﬁyj dy‘ S )\*(j+l)/2 S )\73/2.

Now consider II. Note that y — =¥ Py (y)[¢(y) — 1] is supported away from the origin.
Integration by parts gives
I < A™™ ¥ > 0.

Consider III. Decompose III = III; + III,, where

Il = eee) / P =y N Ry ()0 () aly <) dy.
Then

| < / N dy < N2,
ly|<e

The other term is ~
I, = e A¢(@0) /ei’\yQyNH[l —a(y/e]b(y) dy,

where b(y) = e_yQRN(y)J(y). Integration by parts gives

. -~ d 1 m
111, = eird(z0) /61@2 . <_CIZZ/2iXy> [yN+1(1 —ay/eb(y)] dy,

SO

yN T gme2q(02)(y /e)b0s) (y)
ym+k

1

k=0 a1 +as+az=m—~k

Ll
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1 N+1-2
S [ WYy
ly|>e

N+2—2m

<& =
if m > % Now choose ¢ such that
€N+272m
N+2 e — \—1/2
)\m

to get |IIT| S A-(NH+2)/2 < \=3/24f N > 1.
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25 Oscillatory Integrals in Higher Dimensions
25.1 Nonstationary phase
Here is the case of nonstationary phase.

Proposition 25.1. Let ¢ : R? = R, ¢ : R? — C be smooth. Assume supp ) is compact
and |V (x)| # 0 for all x € suppyp. Then I(\) = [ @) (x) dr satisfies

TN S AT™ Vm > 0.
Proof. As in the 1 dimensional case, we use integration by parts. We write

ind(@) _ _ VOE) o ing(a)
= AVe@p V)

Then

I(\) = / M@y . {mzp(x)] dz,

SO
[T S AT

where the implicit constant depends on the C? norm of ¢ and the C' norm of ). Now
iterate. O

There is an equivalent of Van der Corput’s lemma.

Proposition 25.2. Let ¢ : R = R, 1 : RY — C be smooth. Assume 1 is compactly
supported and |D*¢(x)| > 1 for al x € supp® for some o € N% with |a| > 1. Then
I(N) = [e??@)(z) dx satisfies

)] < C(lal, AV loo + V|-
Remark 25.1. This is worse than the previous proposition when |a] = 1. We will also
beat it when || = 2, so we will not actually prove it.
25.2 Stationary phase and Moore’s change of variables lemma

Here is the case of stationary phase.

Proposition 25.3 (stationary phase). Let ¢ : R? — R be smooth, and assume ¢ has a

¢ } 0

nondegenerate critical point at xo; that is, Vo(xg) = 0, but det [
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Assume that ¢ : R* — C is smooth and supported in a sufficiently small neighborhood of
xo. Then

I(\) = / @) (x) da:
= A0 (20) (2mi) V2NN (det[D?p(0)]) % + O(AH2T)
as A — 00.

Remark 25.2. If we just aim for the correct decay order (and not the precise coefficient),
we argue as follows: Let a : R — R be a cutoff with

1 <1
a(x) = ] <
0 |z[>2

and decompose I(\) = I1 () + I2(A), where

L(\) = / @)y (2)a(N2 (z — x0)) da.
Then
L) S A2

Integration by parts gives
[Io(AN)| S AT™ Ym > 0.

Lemma 25.1 (Morse). If xg is a nondegenerate critical point of a smooth function ¢ :
R? — R, then there exists a smooth change of variables x — y(z) such that y(xg) = 0,
%(mo) =1d, and

d
$(x) = dwo) = Y %)\jy]z,
j=1

where My, ..., \q are the eigenvalues of D>¢(xq).

Proof. Performing an orthogonal change of variables, we may assume that D?¢(zq) =
diag(A1, ..., Aq). By Taylor expansion,

2

1
o) = o) + Zfar)™ o = 0) + | (1= ) G160 + o = a0))] .

So
1
o) = 6(a0) = [ (1= )G llw = 20) Volao -+ ta — o)) d
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—Z/ (L= 0 — il = a0) (o + o — o))

1,521

= Z €T — Jjo)z(iﬁ — .’L'O)jmz,j(x)a

4,521

where m; j( fo t) (xo+t(x—x0)) dt. Note that the m; j are smooth, m; j(x) =

{l‘

m;i(x), and mm‘(iﬁo) = %8 a‘b (o). So

1 .
[mi j(w0)]1<ij<d = 5 diag(A1, - Aa)-

We argue inductively. Assume

1 1 _
o) = dlwo) = Shpt + o+ SAayla + Y W)y

nLj2r

for some 1 < r < d, where y(zg) =0, %(wo) = Id, and m;; = m;;. We know that
D?[RHS(z)]y=z, = diag(A1, ..., Aq). Then

0? yr Oy, %y,
A = |\ A
x;0x; ( K ‘ _ [ " ox; 0x; Oz + Akl 0x;0x;
T=x(0 T=x
= Ai0i 10

So

> i (W)yiys | | (x0) = diag(0,...,0, Ar, ..., Ag).

i,j>r
We now have

axkaxg Z ml,j yz: Yj - Z mz] 6k 156,] + 6[ zék,])
] 2>T 1,j>r

T=x0

This tells us that )
17,3 (0)]r<ij<a = 5 diag(Ar, ..., Aa)

Change variables as follows:

y;:yj Jj#T

U = \/ (yr + 2z zr: ygy])
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We need to show that this is a diffeomorphism with y/(z¢) = 0, %—Z\ w=zo = Id, and
1 9 1 N9 —
¢(x) = d(z0) = ghyr + -+ A (yp)” + > i (W)viys.
i,j>r+1

We have y/(z¢) = 0 because each y; is 0 at xg. For j #r,

/
0y; — 5
3 - v
ox; oo
SO
, — 0
8yr mT, m] T =4
ox; Ar/ Z o
tla=xg v/ j>r+1

Now we have

~ 1 ~
> i (y)yiys — 5)\r(y£)2 = i)y

Lj2r hLj2r

This completes the proof.
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